

DATA REPORT Rev1

21-1242

January 11, 2023

Explorations and Geotechnical Services

Proposed Offshore Wind Terminal Sears Island Searsport, Maine

Prepared For: Moffatt & Nichol Attention: Justin Dominguez, P.E. 180 Wells Avenue, Suite 302 Newton, MA 02459

Prepared By: S. W. Cole Engineering, Inc. 26 Coles Crossing Drive Sidney, ME 04330 T: 207.626.0600

www.swcole.com | info@swcole.com

Geotechnical Engineering | Construction Materials Testing | Special Inspections

TABLE OF CONTENTS

1.0 INTRODUCTION	. 1
1.1 Scope and Purpose	. 1
1.2 Site and Proposed Construction	. 1
2.0 EXPLORATION AND TESTING	. 2
2.1 Explorations	. 2
2.2 Field Testing	. 3
2.3 Laboratory Testing	. 3
3.0 SUBSURFACE CONDITIONS	.4
3.1 Soil and Bedrock	.4
3.1.1 Marine Borings	.4
3.1.2 Land Borings and Test Pits	. 4
3.1.4 Road Borings	. 5
3.2 Groundwater	. 5
4.0 CLOSURE	. 6

Limitations
Figures
Exploration Logs & Key
Laboratory Test Results

www.swcole.com

21-1242

January 11, 2023

Moffatt & Nichol Attention: Justin Dominguez, P.E. 180 Wells Avenue, Suite 302 Newton, MA 02459

Subject: Data Report Rev1 Explorations and Geotechnical Services Proposed Offshore Wind Terminal Sears Island Searsport, Maine

Dear Justin:

In accordance with our Revised Proposal, dated December 29, 2021, we have performed subsurface explorations and completed laboratory testing for the subject project. This report summarizes our findings, and its contents are subject to the limitations set forth in Appendix A. This report has been revised to incorporate supplemental laboratory testing.

1.0 INTRODUCTION

1.1 Scope and Purpose

The purpose of our services was to obtain subsurface information for use by others. Our scope of services included marine test borings, land test borings, and test pit explorations, soils laboratory testing, and preparation of this report.

1.2 Site and Proposed Construction

The site is located on the western side of Sears Island at the end of Sears Island Road in Searsport, Maine. We understand the site consists of about 50 acres of heavily wooded area and will extend offshore into Penobscot Bay.

Based on the provided conceptual plans and our discussions with you, we understand the proposed development will include an approximately 1,560-foot-long cellular cofferdam seawall located about 800 to 1,000 feet offshore with an earth infill between the cellular cofferdam and shoreline. We understand the existing inland area is being contemplated to be cut and reused as the earth infill between the shoreline and cofferdam. We understand site cut and fill slopes will be constructed at about 3H:1V or flatter.

Existing site features are shown on the "Exploration Location Plan" attached in Appendix B.

2.0 EXPLORATION AND TESTING

2.1 Explorations

Fifteen marine test borings (MB-1 through MB-10, MB-3A, MB-4A, MB-6A, MB-9A, and MB-9B) were made at the site on June 23 through July 21, 2022, by New England Boring Contractors working under subcontract to S. W. Cole Engineering, Inc. (S.W.COLE). Nine land test borings (LB-1 through LB-9) and six road test borings (RB-1 through RB-6) were made at the site on August 15 through August 23, 2022, by S. W. Cole Explorations, LLC. Ten test pits (TP-1 through TP-10) were made at the site on August 23, 2022, by Comprehensive Land Technologies, Inc. working under subcontract to S.W.COLE.

The exploration locations were selected by Moffatt & Nichol and established in the field by S.W.COLE using mapping-grade GPS methods. The approximate exploration locations are shown on the "Exploration Location Plan" attached in Appendix B. Logs of the test boring and test pit explorations and a key to the notes and symbols used on these logs are attached in Appendix C.

Open standpipe piezometers were installed in borings LB-2, LB-6, and LB-7. Piezometer installation details are noted on the logs.

2.2 Field Testing

The test borings were drilled using a combination of hollow-stem auger and cased wash-boring techniques. The soils in the test borings were generally sampled at 2-to-5-foot intervals using a split-spoon sampler and Standard Penetration Testing (SPT) methods. Pocket Penetrometer Tests (PPT) were performed where stiffer cohesive soils were encountered in the test boring. Vane Shear Testing (VST) was performed where softer cohesive soils were encountered in the boring locations. SPT blow counts, PPT, and VST results are shown on the boring logs.

2.3 Laboratory Testing

Soil samples obtained from the explorations were returned to our laboratory for further classification and testing. Laboratory testing was completed on selected samples as requested:

- 31, Moisture Content Tests
- 13, Atterberg Limits Tests
- 34, Gradation Tests
- 12, Gradation Tests with Hydrometer
- 1, One-Dimensional Consolidation Tests
- 1, Modified Proctor Test
- 1, Specific Gravity Test
- 10, Unconfined Rock Core Compressive Strength Tests

As requested, we completed additional laboratory testing on recompacted composite samples of glacial till including 4 Atterberg Limits and 2, one-dimensional consolidation tests.

Moisture content, Atterberg Limits, and unconfined rock core compressive strength test results are noted on the logs. The results of the gradation, hydrometer, consolidation, moisture-density (proctor), and specific gravity testing are attached in Appendix D.

3.0 SUBSURFACE CONDITIONS

3.1 Soil and Bedrock

3.1.1 Marine Borings

The marine test borings encountered a soil profile generally consisting of bay mud to depths varying from about 0.3 to 7 feet below mud-line, overlying a relatively softer marine deposit consisting of silts, clays, and sands to depths varying from about 10 to 40 feet, overlying dense to very dense glacial till generally consisting of sandy silt to silt and sand with varying amounts of gravel, cobbles and boulders, overlying bedrock at depths varying from about 28.5 to 67 feet below mud-line, where encountered.

Marine borings MB-3, MB-4, MB-6, MB-6A, MB-9, and MB-9A were terminated in the very dense glacial till at depths varying from about 22 to 56.5 feet below mud-line, and marine boring MB-8 was terminated in a hard, silty clay, trace sand, trace gravel (possible decomposed bedrock) at a depth of about 95 feet below mud-line. The remaining marine borings (MB-1, MB-2, MB-3A, MB-4A, MB-5, MB-7, MB-9B, and MB-10) were advanced into and terminated in bedrock. Where rock cores were obtained, the bedrock consisted of gray to dark gray, Schist of the Penobscot Formation.

Not all the strata were encountered at each exploration; refer to the attached logs for more detailed subsurface information.

3.1.2 Land Borings and Test Pits

Below a layer of forest duff, the landside explorations generally encountered a soils profile consisting of marine deposits overlying glacial till except at borings LB-5, LB-7, LB-9, and test pit TP-8 where a surficial layer of fills were encountered overlying the marine deposits and glacial till.

Borings LB-5, LB-7, and LB-9 and test pit TP-8 encountered a surficial layer of granular fill or reworked native soils to a depth of about 2.5 to 7 feet. The fills and reworked soils generally consisted of medium dense to loose, sand with varying amounts of gravel and silt.

The marine deposits were encountered to a depth of about 2 to 15 feet, where penetrated, and generally consisted of silt and sand with varying amounts of gravel. However, in boring LB-1 and test pits TP-7 and TP-9, a layer of stiff to very stiff, silty clay was encountered below the forest duff and topsoil extending to depths of 7 to 11 feet.

Below the fills or marine deposit, the land borings encountered glacial till generally consisting of stiff to hard, silt and sand to sandy silt with varying amounts of gravel, and some to trace clay. The land borings were terminated in the glacial till at depths of about 40.5 to 42 feet.

Not all the strata were encountered at each exploration; refer to the attached logs for more detailed subsurface information.

3.1.3 Road Borings

Six test borings (RB-1 to RB-6) were made along Sears Island Road and encountered a subsurface profile consisting of fill to depths of 6 to 8 feet where penetrated except at boring RB-5 which was terminated in the fill at a depth of 10 feet. The fills generally consisted of an upper medium dense to dense, sand and gravel with some silt (roadway gravels) overlying stiff to very stiff, silt and sand, with varying amounts of gravel (probable reworked native soils). The fills were underlain by native stiff to very stiff, silty clay at RB-1 or glacial till consisting of stiff to very stiff, silt and sand with varying amounts of gravels at RB-2, RB-3, RB-4, and RB-6. The road borings were terminated at a depth of 10 feet.

Not all the strata were encountered at each exploration; refer to the attached logs for more detailed subsurface information. Interpretive subsurface cross-sections are provided in Appendix B.

3.2 Groundwater

The soils encountered in the landside test borings were generally damp to wet from the ground surface. Where encountered, groundwater was observed at depths generally ranging from about 10 to 15 feet below the ground surface. Follow-up groundwater measurements made at piezometer installed in land borings LB-2, LB-6, and LB-7 are noted on the boring logs attached in Appendix C.

4.0 CLOSURE

It has been a pleasure to be of assistance to you with this phase of your project. We look forward to working with you during the design phase of the project.

Sincerely,

S. W. Cole Engineering, Inc.

Michael A. St. Pierre, P.E. Senior Geotechnical Engineer

MAS:tjb

APPENDIX A

Limitations

This report has been prepared for the exclusive use of Moffatt & Nichol for specific application to the proposed Offshore Wind Terminal on Sears Island in Searsport, Maine. S. W. Cole Engineering, Inc. (S.W.COLE) has endeavored to conduct our services in accordance with generally accepted soil and geotechnical practices. No warranty, expressed or implied, is made.

The soil profiles described in the report are intended to convey general trends in subsurface conditions. The boundaries between strata are approximate and are based upon interpretation of exploration data and samples.

Observations have been made during exploration work to assess site groundwater levels. Fluctuations in water levels will occur due to variations in rainfall, temperature, and other factors.

S.W.COLE's scope of services has not included the investigation, detection, or prevention of any Biological Pollutants at the project site or in any existing or proposed structure at the site. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and the byproducts of any such biological organisms.

www.swcole.com

APPENDIX B

Figures

THE PURPOSE OF THIS PLAN IS ONLY TO DEPICT THE LOCATION OF THE EXPLORATIONS IN RELATION TO THE EXISTING CONDITIONS AND PROPOSED CONSTRUCTION AND IS NOT TO BE USED FOR CONSTRUCTION.

Job No.: 21-1242 Date : 12/08/2022 Scale: As Noted Sheet: 1

8+00.00	9+00.00	10+00.00	11+00.00	12+00.00	13+00.00	14+00.00	15+00.00	16+00.00	17+00.00	
	INTER	RPRETIVE SEC	TION A							
		ORIZ. SCALE: 1" = 8	30'							
	N	VERT. SCALE: 1" = 1	0'							

- 1. THE DEPTH AND THICKNESS OF THE SUBSURFACE STRATA INDICATED ON THESE PROFILES WERE GENERALIZED FROM AND INTERPOLATED BETWEEN EXPLORATION LOCATIONS. THE TRANSITION BETWEEN MATERIALS MAY BE MORE OR LESS GRADUAL THAN INDICATED. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE SPECIFIC LOCATIONS INDICATED AND AT THE TIME OF EXPLORATION.
- 2. SEE EXPLORATION LOGS FOR MORE DETAILED DESCRIPTION OF SUBSURFACE STRATA.
- 3. THESE PROFILES SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT AND ARE NOT TO BE USED FOR CONSTRUCTION.

HORIZ. SCALE: 1" = 80' VERT. SCALE: 1" = 10'

- 1. THE DEPTH AND THICKNESS OF THE SUBSURFACE STRATA INDICATED ON THESE PROFILES WERE GENERALIZED FROM AND INTERPOLATED BETWEEN EXPLORATION LOCATIONS. THE TRANSITION BETWEEN MATERIALS MAY BE MORE OR LESS GRADUAL THAN INDICATED. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE SPECIFIC LOCATIONS INDICATED AND AT THE TIME OF EXPLORATION.
- 2. SEE EXPLORATION LOGS FOR MORE DETAILED DESCRIPTION OF SUBSURFACE STRATA.
- 3. THESE PROFILES SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT AND ARE NOT TO BE USED FOR CONSTRUCTION.

HORIZ. SCALE: 1" = 80' VERT. SCALE: 1" = 10'

- 1. THE DEPTH AND THICKNESS OF THE SUBSURFACE STRATA INDICATED ON THESE PROFILES WERE GENERALIZED FROM AND INTERPOLATED BETWEEN EXPLORATION LOCATIONS. THE TRANSITION BETWEEN MATERIALS MAY BE MORE OR LESS GRADUAL THAN INDICATED. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE SPECIFIC LOCATIONS INDICATED AND AT THE TIME OF EXPLORATION.
- 2. SEE EXPLORATION LOGS FOR MORE DETAILED DESCRIPTION OF SUBSURFACE STRATA.
- 3. THESE PROFILES SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT AND ARE NOT TO BE USED FOR CONSTRUCTION.

- 1. THE DEPTH AND THICKNESS OF THE SUBSURFACE STRATA INDICATED ON THESE PROFILES WERE GENERALIZED FROM AND INTERPOLATED BETWEEN EXPLORATION LOCATIONS. THE TRANSITION BETWEEN MATERIALS MAY BE MORE OR LESS GRADUAL THAN INDICATED. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE SPECIFIC LOCATIONS INDICATED AND AT THE TIME OF EXPLORATION.
- 2. SEE EXPLORATION LOGS FOR MORE DETAILED DESCRIPTION OF SUBSURFACE STRATA.
- 3. THESE PROFILES SHOULD BE USED IN CONJUNCTION WITH THE ASSOCIATED S. W. COLE ENGINEERING, INC. GEOTECHNICAL REPORT AND ARE NOT TO BE USED FOR CONSTRUCTION.

www.swcole.com

APPENDIX C

Exploration Logs and Key

KEY TO NOTES & SYMBOLS Test Boring and Test Pit Explorations

Stratification lines represent the approximate boundary between soil types and the transition may be gradual.

Key to Symbols Used:

- w water content, percent (dry weight basis)
- qu unconfined compressive strength, kips/sq. ft. laboratory test
- S_v field vane shear strength, kips/sq. ft.
- L_v lab vane shear strength, kips/sq. ft.
- q_p unconfined compressive strength, kips/sq. ft. pocket penetrometer test
- O organic content, percent (dry weight basis)
- W_L liquid limit Atterberg test
- W_P plastic limit Atterberg test
- WOH advance by weight of hammer
- WOM advance by weight of man
- WOR advance by weight of rods
- HYD advance by force of hydraulic piston on drill
- RQD Rock Quality Designator an index of the quality of a rock mass.
- γ_T total soil weight
- $\gamma_{\rm B}$ buoyant soil weight

Description of Proportions:

Description of Stratified Soils

		Parting:	0 to 1/16" thickness
Trace:	0 to 5%	Seam:	1/16" to 1/2" thickness
Some:	5 to 12%	Layer:	1⁄2" to 12" thickness
"Y"	12 to 35%	Varved:	Alternating seams or layers
And	35+%	Occasional:	one or less per foot of thickness
With	Undifferentiated	Frequent:	more than one per foot of thickness

REFUSAL: <u>Test Boring Explorations</u> - Refusal depth indicates that depth at which, in the drill foreman's opinion, sufficient resistance to the advance of the casing, auger, probe rod or sampler was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

REFUSAL: <u>Test Pit Explorations</u> - Refusal depth indicates that depth at which sufficient resistance to the advance of the backhoe bucket was encountered to render further advance impossible or impracticable by the procedures and equipment being used.

Although refusal may indicate the encountering of the bedrock surface, it may indicate the striking of large cobbles, boulders, very dense or cemented soil, or other buried natural or man-made objects or it may indicate the encountering of a harder zone after penetrating a considerable depth through a weathered or disintegrated zone of the bedrock.

	CLIENT: <u>Moffatt & Ni</u> ROJECT: <u>Sears Isla</u> OCATION: Sears Is	G LOG	BORING NO.: MB-1 SHEET: 1 of 2 PROJECT NO. 21-1242 DATE START: 6/23/2022 DATE FINISH: 6/24/2022	
Drilling Inform LOCATION: N. 28 DRILLING CO.: N RIG TYPE: Skid M HAMMER TYPE: HAMMER EFFICIEI WATER LEVEL DE GENERAL NOTES	ation 84202.3106, E. 881785.6 lew England Boring Contr Mounted CME 45 Automatic / Safety NCY FACTOR: 0.688 PTHS (ft): Marine bor : Borehole loaged from	125 ELEVATION (FT):12 ractors DRILLER: Sam Cooley AUGER ID/OD:N/A / 1 HAMMER WEIGHT (Ibs)	.1' +/- TOTAL DEPTH (FT): 80.5 L DRILLING METHOD: Cased Boring V/A SAMPLER: Standard Split-Spoon : 140 / 300 CASING ID/OD: 4 in / 4 1/2 in C 30 / 16 Contract of the second se	OGGED BY: John Cozens
KEY TO NOTES W AND SYMBOLS: ☑ ☑	/ater Level At time of Drilling At Completion of Drilling After Drilling	D = Split Spoon Sample Pen. U = Thin Walled Tube Sample Rec. R = Rock Core Sample bpf = V = Field Vane Shear mpf =	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	eld Vane Shear Strength, kips/sq.ft. nconfined Compressive Strength, kips/sq.ft. iction Angle (Estimated) Not Applicable
Elev. Depth (Cas (ft) (ft) (bp	ing n. of) Sample e No. ⊢ Depth (ft)	E INFORMATION Pen./ Blow Rec. Count (in) RQD Field / Lab Test Data	Sample Securition & Classification	H ₂ 0 _{Depth} Remarks
-15 	1D 0-2	24/15 WOR/24 ID 14064A w =48.3 % W _L =64 W _p =30	Very soft, dark gray, wet, sandy silty CLA organic odor (BAY MUD)	Y,
5 -20 	2D 5-7	24/8 WOR/24*	5.0 Very soft, gray, wet, SILT, some clay, tra sand	
	3D 10-12	24/22 WOR/24* ID 14065A w =31.6 % W _L =74 W _P =42		
15 -30 - -	4D 15-17	24/12 WOR/12"- W0H-1	16.0 Very loose, gray, wet, silty fine to medium SAND, trace clay	n
- - 20 -35 - -	5D 20-22	24/8 WOH- 1-1-1 ID 14066A w =33.5 %	Very loose, gray, wet, silty SAND, trace o	day
	6D 25-27	24/20 WOR/12"- ID 14067A WOH/12* w =33.5 % WL=38 W _P =18	25.0 Very soft, gray, wet, silty CLAY,	
	7D 30-32	24/13 1/24"	30.0 Very loose, gray, wet, silty SAND, some gravel, trace clay	fine
	8D 35-37	24 4-3-3-4	Loose, gray, wet, silty SAND, some grave	el
Stratification lines repre- boundary between soil gradual. Water level re- at times and under con Fluctuations of groundw other factors than those measurements were m	esent approximate types, transitions may be adings have been made ditions stated. water may occur due to e present at the time tade.		(Continued Next Page)	BORING NO.: MB- 1

ļ							B	ORIN	GΙ	LOG	BC SH	RING	NO.:	MB- 1 2 of 2
		CLI	ENT: _	Nof	fatt & N	ichol					PR	OJEC.	T NO.	21-1242
		PR		_ <u></u>	Sears Isl	and Offs	shore Wi	nd Terminal					ART:	6/23/2022
5	S.W.COL	E		-	Sears is	lanu, Se	earsport,	Maine					NISE:	0/24/2022
				_	SAMPL	E INFO	RMATIO	N	ß					
E	Elev. Dept (ft) (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification		H ₂ 0 Depth		Remarks
	-55 —		9D	M	40-42	24/2	7-8-10-		0	40.0 Medium dense, gray, wet, silty fine to				
	- - -	5							0 () 0 (coarse SAND, some gravel, trace clay				
	-60		10D	X	45-47	24/3	12-16- 18-18			^{45.0} Medium dense to dense, gray, wet, grave sandy SILT (GLACIAL TILL)	lly			
	-65 		11D	X	50-52	24/19	5-6-9- 13							
	-70	5	12D	X	55-57	24/15	11-14- 12-19							
	-75)	13D	X	60-62	24/12	20-30- 25-52			Dense to very dense, gray, wet, gravely SILT and SAND (GLACIAL TILL)				
	-4 -80 -4 -4	5	14D	X	65-67	24/15	18-33- 39-58							
)	1R		70.5- 75.5	60/58	81	Qu=20,360psi		68.5 Bedrock. Advanced by roller-cone from 68.5 to 70.9 ft. Gray, SCHIST, with some calcite veins, hard; fresh to very slightly weathered; joir vary from low angle (0-35°) to moderately to route the second sec	5 Its			
	7! 7! -90 	5	2R		75.5- 80.5	60/59	91			steep (35-35), occasionally steep (55-85 very close (< 2") to moderately close (1-3 and tight to open, slight weathering on joi surfaces, (PENOBSCOT FORMATION)	"), 5'), nt			
	+								\mathbb{N}					
Ĺ	- 80)		1					V//	Bottom of Exploration at 80.5 foot				
ì										Bottom of Exploration at 00.5 leet				
S I	tratification line	tification lines represent approximate ndary between soil types, transitions may be												
g	radual. Water I	evel readi ler conditi	ngs have b	een	made									
For	luctuations of g ther factors that	roundwat n those p	er may occ resent at th	ur d ie tin	ue to ne						вс	RING	NO.:	MB- 1

E							B	BORIN	G	LOG	BORING SHEET:	NO.:	MB- 2 1 of 2
	=,	CLIE	NT: _№	/lof	fatt & N	lichol					PROJEC	T NO.	21-1242
		PRO.	JECT:	S	ears Is	and Offs	shore Wi	nd Terminal			DATE ST	ART: 6	/29/2022
S.W.C	COLE	LOCA	ATION:	:_	Sears Is	sland, Se	earsport,	Maine			DATE FI	NISH:6	/30/2022
	ng Info TION: N	ormatic	on 6 3087	F	881427 7	7661 I		DN (FT): -43	5' +/-	TOTAL DEPTH (FT): 84.0 LC	GGED BY:	. John Coz	ens
DRILL	ING CO.:	New E	England	Boi	ring Cont	tractors I	ORILLER:	Sam Cooley		DRILLING METHOD: Cased Boring		<u></u>	
RIG T	PE: S	kid Moun	ted CM	E 4	5		AUGER ID	/OD: N/A / N	I/A	SAMPLER: Standard Split-Spoon			
HAMM	ER TYPE	E: Auto	matic / :	Saf	ety	I	HAMMER	WEIGHT (Ibs):	_14	0 / 300 CASING ID/OD: _4 in / 4 1/2 in CO	ORE BARRE	EL: <u>NQ2/</u>	2
			FACTO	R:	0.688	ł	HAMMER	DROP (inch):	30 /	16			
GENE	RAI NOT		3 (IL): Borehole		narine bo	ning nimudline							
KEY T	O NOTES	Water I	Level	5 10	ggod noi	D = Split S	ipoon Samp	le Pen. =	Pene	etration Length WOR = Weight of Rods S, = Fiel	d Vane Shear	r Strength, kips	s/sq.ft.
AND S	YMBOLS:	⊈ At tir ⊈ At C ⊈ After	me of Dril completion r Drilling	lling n of	Drilling	U = Thin V R = Rock (V = Field \	Valled Tube Core Sampl /ane Shear	e Sample Rec. = bpf = mpf =	= Reco Blows Minut	wory Length WOH = Weight of Hammer q_0 = Unc per Foot RQD = Rock Quality Designation Ø = Fric e per Foot PID = Photoionization Detector N/A = N	confined Com tion Angle (Es ot Applicable	pressive Stren stimated)	ngth, kips/sq.ft.
		_		1 1	SAMPL	E INFO	RMATIO	N	- bo-	Commis			
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec.	Blow Count or	Field / Lab Test Data	Graphic I	Description & Classification	H ₂ 0 Depth	Rer	marks
			10		0.2	24/20		ID 14069A					
45 -	-		ID.	X	0-2	24/20	1000/24	w =57.9 %	[-C	organic odor (BAY MUD)			
-40 -	-			Ĥ				W _L =56 W _P =27	FG				
-	-												
-	- 5		00	Ц		04/04	1	n −0 5 kaf					
-	-		2D	М	5-7	24/24	1-3-2-3	q _P =2.5 kst		5.0 Stiff to medium stiff, gray, wet, silty CLAY			
-50 -	-			А									
	-												
-	-												
-	- 10		3D	Μ	10-12	24/12	1-2-2-3	q _P =1.0 ksf					
-55 —	-		111	Δ	12 14	24/0							
-	-		10		12-14	24/0				No recovery			
	-		1V	日	14-14.5	6		S _∨ =0.58/0.20ks	Ŵ	Medium stiff, gray, wet, silty CLAY, trace			
-	- 15		2V 4D	Ħ	14.5-15	6	WOR/24	S _V =0.60/0.13ks		fine sand			
-60 -			2U		16-18	24/20		ID 14070A w =31.4 %					
-	-		5D		18-20	24/18	1/24"	W _L =33 W _p =17					
	-		00	X	10 20	24/10	1/24	F		SILT, trace gravel, trace clay			
-	- 20			Ĥ									
-65 -	-												
-													
-	-												
	- 25		6D	Н	25-27	24/6	2-2-9-			25.0 Medium dense to very dense grav wet			
-70 –	-			Х			15			gravelly sandy SILT (GLACIAL TILL)			
5 -	-			Ħ					1				
- 1	[<i>Ub</i>				
5 -	- 30		70	H	30 33	21/2	13 16						
- 75 -	-		10	X	50-52	24/2	15-26						
-/5 -	-			Н									
5													
5 -	- 35												
			8D	М	35-37	24/9	16-30-			Very dense, gray, wet, gravelly sandy SIL			
- 80 -]-			А					(A)				
707	-								Ű				
	-												
Stratifica bounda	ation lines in the second s	represent soil types	approxim , transitio	nate ons r	may be					(Continued Next Page)			
at times	and under	condition	s nave be s stated.	een Jr di	made ue to								
other fa	ctors than t	those pres	sent at the	e tim	ne						BORING	NO.:	MB- 2

E		CLI	BORING LOG CLIENT: _Moffatt & Nichol PROJECT: Sears Island Offshore Wind Terminal						BC SH PR	RING EET: OJEC	NO.: MB- 2 2 of 2 T NO. 21-1242		
SWO	COLF	PRO LOC	DJECT:		Sears Isla Sears Is	and Offs Iand, Se	shore Wi earsport,	nd Terminal Maine			DA DA	TE ST	ART: 6/29/2022 NISH: 6/30/2022
					SAMPL	E INFO	RMATIO	N	bo				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification		H ₂ 0 Depth	Remarks
-85 -	- - - - - - -		9D	X	40-42	24/7	18-30- 27-23						
-90 -	- - - - - - - - -		10D	X	45-47	24/15	22-29- 50-40						
-95 -	- - - - - -		11D	X	50-52	24/7	10-18- 21-27			Dense, gray, wet, gravelly sandy SILT (GLACIAL TILL)			
-100 -	- - 55 		12D	X	55-57	24/13	16-42- 55-50			Very dense, gray, gravelly SAND and SILT (GLACIAL TILL)	Г		
-105 -	- - - - - - - -		13D	X	60-61.3	15/7	22-56- 50/3"						
-110 -	- - - - - - - -		14D	X	65-67	24/6	27-32- 27-37						
-115 -	- - - - - - - - - -		15D	×	70-70.3	3/3	50/3"			Very dense, dark gray, gravelly SAND and SILT, with bedrock fragments (GLACIAL TILL)	I		
ະ ຊູ -120 -	- - - - - - - - - -		1R		74-79	60/60	65	Qu=5,090psi		74.0 Bedrock. Gray to dark gray, SCHIST, hard; very slightly weathered; joints generally low angle (0-35°) to moderately steep (35-55°).		
EMPLATE.GDT 12/14/ - 551-	- - - - - - - - - - - - - - - - - - -		2R		79-84	60/60	35			occasionally vertical (85-90°), very close (2") to moderately close (1-3'), and tight to open, (PENOBSCOT FORMATION)	<		
								Qu=4,840psi		Pottom of Exploration at 94.0 fact			
VELL 10-12-2022 21-1242.GPJ (punnoq punnod	ation lines ry betweer	represer a soil type	nt approximes, transitic	nate	may be								
gradual at times Fluctua other fa measur	. vvater lev and unde tions of gro ctors than ements we	vei readir r conditio oundwate those pr ere made	ings have boons stated. From may occur resent at the Second states of the second states of th	een ur d e tin	ue to ne						во	RING	NO.: MB- 2

E							E	BORIN	G	LOG	BOR	RING NO.: ET:	MB- 3 1 of 1
		CLI	ENT: N	/lof	fatt & N	lichol					PRO	JECT NO.	21-1242
		PR	OJECT:	S	ears Is	land Offs	shore Wi	nd Terminal			DAT	E START:	6/30/2022
S.W.C	COLE		CATION	_	Sears Is	sland, Se	earsport,	Maine			DAT	E FINISH:	//1/2022
Drillin Loca Drillin Rig TY HAMM HAMM	ng Info FION: <u></u> ING CO.: (PE: <u>SI</u> ER TYPI ER EFFI R LEVEL	N. 2839 New Kid Mou E: Au CIENC DEPT	ion 995.1197, v England unted CMI ttomatic / 3 cY FACTO THS (ft):	E. Bo E 4 Saf DR:	881396.2 ring Con 5 fety 	2632 tractors 	elevatic Driller: Auger ID Hammer Hammer	DN (FT):46 Sam Cooley D/OD:N/A / N WEIGHT (Ibs): DROP (inch):	.1' +/- I/A : <u>14</u> _30 /	TOTAL DEPTH (FT): 40.0 L DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 / 300 CASING ID/OD: 4 in / 4 1/2 in C 16 Contract of the second secon	OGGEI	D BY: John	n Cozens
GENE	RAL NOT	ES:	Borehole	e lo	gged fror	m mudline							
KEY TO AND S	O NOTES YMBOLS:	<u>Wate</u> ⊻ At ¥ At ¥ Af	e <u>r Level</u> t time of Dri t Completion fter Drilling	lling n of	l Drilling	D = Split S U = Thin V R = Rock V = Field V	poon Samp Valled Tube Core Sampl /ane Shear	e Pen. = Sample Rec. = bpf = mpf =	= Pene = Reco Blows Minut	etration Length WOR = Weight of Rods $S_v = Fi$ overy Length WOH = Weight of Hammer $q_u = Ur$ per Foot RQD = Rock Quality Designation $\emptyset = Fri$ e per Foot PID = Photoionization Detector N/A = I	eld Vane nconfined ction Ang Not Appli	Shear Streng d Compressive gle (Estimated cable	th, kips/sq.ft. 9 Strength, kips/sq.ft.)
					SAMPI	E INFO	RMATIO	N	ő				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	ſ	H₂0 Depth	Remarks
-	_		1D	M	0-2	24/24	WOR/24	q _P =0.6 ksf		0.3 Very soft, black, wet, sandy SILT, trace	ĺ		
-	+			Д						Medium stiff, gray, wet, SILT and CLAY			
-50 -	+												
-	- 5		2D	\square	5-7	24/24	WOR/24	q _P =0.4 ksf		Soft grav wet silty CLAY			
-	-			X				ID 14073A w =27.5 %					
-	-		10		7-9	24/0		VV _L =38 W _P =17		No recovery			
-55 —	-		1V	品	9-9.5	6		S _v =.68/.19ksf					
-	1- 10 -		2V 3D	X	9.5-10	6 12/11	WOR-1	5 _V =.04/.19KSI					
-	+												
-60	+ -												
-	- 15		4D	\square	15-17	24/17	1-4-5-7			Very soft gray wet silty CLAY			
-	-			M									
-	-									^{10.0} Stiff, gray, wet, sandy SILT, some clay, trace gravel (GLACIAL TILL)			
-65 —	-								K				
	- 20 -		5D	\square	20-22	24/8	6-7-11- 12			Medium dense, gray, wet, sandy SILT,			
-	-			Д						Some graver, trace day (GEACIAE TIEL)			
-70 -	+ -												
-	- 25		6D	\square	25-27	24/11	4-6-10-						
-	-			M			14						
- 5	-												
-75 -	+												
	- 30 -		7D		30-32	24/12	4-2-9-7			Medium dense, gray, wet, sandy SILT,			
-	-			А						Coarse gravel to cobbles encountered			
-80 -	Ļ									during drilling			
-	- 35		8D	H	35-37	24/14	25-36-			Very dense grav wet gravelly sandy SII	т		
	1			M			37- 50/3"			(GLACIAL TILL)	.		
	Ĺ			\square					Ű				
-85 —	+												
Stratification	ation lines ry between	soil typ	nt approxim es, transitio	nate ons r	may be					Bottom of Exploration at 40.0 feet			
gradual. at times	Water lev and under	el readi condition	ngs have be ons stated. er may occu	een Jr di	made ue to								
other factor	ctors than	those pr	resent at the	e tin	ne						BOR	RING NO.:	<u>MB-</u> 3
-													

							E	ORIN	GI	LOG			BORING	NO.: _	MB- 3A
$' \equiv$		CLI	ENT: N	/lof	fatt & N	ichol							PROJEC	T NO.	21-1242
	フ	PRO	DJECT:	S	ears Isl	and Offs	hore Wi	nd Terminal					DATE ST	ART:	7/5/2022
S.W.O	COLE	LOC	CATION	:_:	Sears Is	sland, Se	earsport,	Maine					DATE FI	NISH:	7/5/2022
Drilli	ng Info	rmat	ion	_											
		I. 2839	91.2894, England	E. i	881392.1 ring Cont	<u>799</u> E		DN (FT): <u>-46</u>	.2' +/-		TOTAL DEPTH (FT): 68.0	LC	GGED BY:	Rick	Seymour
RIGT	YPE: SI	id Mor	Inted CM	Б0 F 4	5	AUGER ID/OD: N/A / N/A SAMPLER: Standard Split-Spoon						Spoon	l		
HAMN	IER TYPE	: Au	tomatic /	Saf	ety	·	AMMER	WEIGHT (lbs)	: 14	0 / 300	CASING ID/OD: 4 in / 4 1/2 ir	n C(ORE BARRE	EL: NO	22/2
HAMN	IER EFFI	CIENC	Y FACTO	R:	0.688		IAMMER	DROP (inch):	30 /	16					
WATE	R LEVEL	DEPT	HS (ft):	N	larine bo	ring									
GENE	RAL NOT	ES:	Borehole	e lo	gged fror	n mudline.						0 5		0	
AND S	ONOTES YMBOLS:	<u>Wate</u> ⊻ At ⊻ At ¥ Af	time of Dri Completion ter Drilling	lling n of	Drilling	D = Split SU = Thin WR = Rock (V = Field V	poon Samp /alled Tube Core Sampl ′ane Shear	e Pen. = Sample Rec. = e bpf = mpf =	= Pene = Reco Blows Minute	etration Length overy Length per Foot e per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	$S_v = Fiel q_U = Unc Ø = Frict N/A = No$	d Vane Shear confined Comp tion Angle (Es ot Applicable	oressive stimated)	, Kips/sq.ft. Strength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	b						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification		H₂0 Depth		Remarks
	-									See sub	boring MB-3 for description of surface strata from 0 to 40 ft.	f			
	-														
-50 -															
· ·	- 5														
· ·	+														
	1														
-55 -															
· ·	- 10														
· ·	+														
	+														
-60 -	-														
-00	- 15														
	- "														
· ·	+														
	+														
-65 -															
	20														
· ·	-														
	+														
-70 -	+														
i i	- 25														
ž .															
. מכ	+														
-75 -	+														
	- 30														
ц .															
	[]														
- 80 -															
- N	- 35														
	+														
77]														
-85 -	-														
Stratific	ation lines	epreser	l nt approxim	late	nav be		l	1			(Continued Next Page)				
gradual	. Water lev	el readir	ngs have be	een	made										
Fluctua other fo	tions of gro	undwate	er may occu	ur du e tim	ue to ne							1	DOD		
measur	ements we	re made).	o ull									BORING	NÖ.:	MR- 3A

E		CLI	ENT: _N	Mof	fatt & Ni	chol	B	ORIN	G	LOG	BC SH PR	ORING IEET: ROJEC	NO.: MB- 3A 2 of 2 T NO. 21-1242
SWO	OLE	PR LO	DJECT: CATION	_ <u>s</u> :_:	ears Isla Sears Is	and Offs land, Se	shore Wi earsport,	nd Terminal Maine			DA DA	TE ST	ART: 7/5/2022 NISH: 7/5/2022
0.00.0					SAMPL	E INFO	RMATIO	N	5				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification		H₂0 Depth	Remarks
-90 -90 - - - - - - - - - - 95	- - - - - - - - - - - -		1D 2D	X	40-41.3	15/14	6-39- 50/3" 30-48- 83/4"			40.0 Very dense, gray, wet, sandy SILT some gravel, occasional cobbles (GLACIAL TI	L)		
- - -100 -	- 50 		3D	X	50-52	24/24	19-16- 21-32	ID 14074A w =8.1 %		Dense, gray, wet, SAND and GRAVEL, trace silt (GLACIAL TILL)			
-105 — - - -	- 60 - 60		R1		58-63	60/58	77	Qu=4,070psi		57.0 Bedrock. Advanced by roller-cone to ±58 ft Gray, SCHIST, hard; fresh; joints genera low angle (0-35°), occasionally moderate steep (35-55°) to steep (55-85°), very clc (< 2") to moderately close (1'-3"), and tigl to open, very slight weathering on joint surfaces, (PENOBSCOT FORMATION)	lly ly se nt		
-110 - - -	- 65 		R2		63-68	60/60	87	Qu=2,630psi					
										Bottom of Exploration at 68.0 feet			

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO .: MB- 3A

F							В	ORIN	G	LOG			BORING SHEET:	NO.: _	MB- 4 1 of 1
	=	CLI	ENT: _	Mof	fatt & N	lichol							PROJEC	T NO.	21-1242
		PRO		_ <u>_</u> S	Sears Isl	and Off	shore Wi	nd Terminal					DATE SI		6/24/2022
S.W.0	COLE		SATION		Sears Is	siand, S	earsport,	Maine					DATE FI		6/24/2022
Drilli LOCA DRILL RIG T HAMM	ng Info TION: <u>1</u> ING CO. YPE: <u>SI</u> IER TYPI	Image: 2839 New Kid Mou E: Au	ion 012.4487 v England unted CM tomatic /	, E. d Bo 1E 4 ' Saf	881670.7 ring Cont 5 fety	7486 tractors	ELEVATIC DRILLER: AUGER ID HAMMER	DN (FT):11 Sam Cooley //OD:N/A / N WEIGHT (Ibs)	.5' +/- N/A : <u>14</u>	0/300	TOTAL DEPTH (FT): 22.0 DRILLING METHOD: Cased SAMPLER: Standard Split-Sp CASING ID/OD: 4 in / 4 1/2 in	LC Boring boon CC	DGGED BY	EL: <u>N//</u>	Cozens
	R LEVEL	DEPT	HS (ft):	0R: 1	0.688 /arine bo	rina	HAMMER	DROP (Inch):	307	16					
GENE	RAL NO	ES:	Boreho	le lo	gged fror	n mudline	Э.								
KEY T AND S	O NOTES YMBOLS:	<u>Wate</u> ∑ At ∑ At ∑ At	er <u>Level</u> time of D Completio ter Drilling	rilling on of	g Drilling	D = Split S U = Thin V R = Rock V = Field V	Spoon Samp Walled Tube Core Sampl Vane Shear	le Pen. Sample Rec. e bpf = mpf =	= Pene = Reco Blows = Minute	etration Length overy Length per Foot e per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	S _v = Fiel q _U = Uno Ø = Fric N/A = No	ld Vane Shea confined Com tion Angle (Es ot Applicable	r Strength pressive \$ stimated)	, kips/sq.ft. Strength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	b b						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification		H₂0 Depth		Remarks
-15 -	- - - - - - - - -		10	X	0-2	24/24	WOR/24	w =30.9 %		Very med with	loose, dark gray, wet, silty fine ium SAND, trace clay, trace gr wood fragments (BAY MUD)	e to avel,			
	- 5		2D	X	5-7	24/11	WOH/12" 1-3	-		shel	fragments in sample	gravel	ly		
-20	- - - - 10		3D	X	10-11.5	18/8	5-3-6-			fine	to coarse SAND, some silt	-			
-25 -	- - - - -						20/0			^{11.5} Boul ^{13.0} Med med	der from ±11.5 to 13 ft ium dense, gray, wet, silty fine ium SAND. some gravel	to			
-	- 15 		4D	X	15-17	24/11	30-10- 7-9								
-30 -	- - 20		5D	X	20-22	24/0	1-1-1-4			No r Very	ecovery loose				
											Bottom of Exploration at 22.0	feet			
Stratifica bounda gradual at times Fluctuat other fa measur	ation lines ry betweer . Water lev and unde tions of gro ctors than ements we	represent soil typ el readin conditio undwate those pr re made	nt approxin es, transiti ngs have b ons stated er may occ resent at th e.	mate ons i been cur d ne tin	may be made ue to ne								BORING	NO.:	MB- 4

BORING / WELL 10-12-2022 21-1242.GPJ SWCE TEMPLATE.GDT 12/14/22

F				_			E	BORIN	G	LOG	BORING SHEET:	NO.: MB-4A 1 of 2
	7	CLI		/lof	fatt & N	lichol	hore M	nd Torminal			PROJEC	APT: 21-1242
CW				 : : :	Sears is	sland Olis	earsport.	Maine			DATE ST	ART: <u>6/27/2022</u> NSH: 6/27/2022
5.W.C			lon									
Driin Loca Drill Rig T Hamm Hamm Wate	ING CO.: ING CO.: IPE: _SH IER TYPE IER EFFI IER LEVEL	I. 2839 New Kid Mou E: Au CIENC	<u>ION</u> 11.4168, <u>2 England</u> unted CM tomatic / Y FACTC 'HS (ft):	E. Bo E 4 Saf DR:	881672.9 ring Con 5 fety 0.688 /arine bo	5485 I tractors I // / / / / / /	Elevatio Driller: Auger ID Hammer Hammer	DN (FT):11 Sam Cooley //OD:	4' +/- //A 	TOTAL DEPTH (FT): 57.8 Lu DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 / 300 CASING ID/OD: 4 in / 4 1/2 in C 16 C	OGGED BY:	John Cozens
GENE	RAL NOT	ES:	Borehole	e lo	gged fro			- Dan	Deres			Other with this of a state
AND S	YMBOLS:	<u>vvate</u> ∑ At ∑ At ∑ Af	time of Dri Completio ter Drilling	illing n of) Drilling	U = Spirts U = Thin V R = Rock V = Field V	Valled Tube Core Samp /ane Shear	sample Pen. = Sample Rec. = le bpf = mpf =	= Pene = Reco Blows Minut	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	confined Comp ction Angle (Es lot Applicable	oressive Strength, kips/sq.ft. timated)
					SAMPI	LE INFO	RMATIC	N	- B			
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	H ₂ 0 Depth	Remarks
-	-									See boring MB-4 for description of		
	-											
-15 -												
	- 5											
-												
	-											
-20 -	- 10											
-	- 10											
-	-											
-25 -	-											
	- 15											
-30 -	-											
-	- 20		10		20-22	24/4	1-2-6-7					
-	-			X	20-22	24/4	4-2-0-7			Loose, gray, wet, gravelly sandy SILT		
-				П								
-35 -												
-	- 25		2D	\square	25-27	24/8	8-6-9- 13			25.0 Medium dense, gray, wet, gravelly sandy		
				А						SILT, TRACE Clay (GLACIAL TILL)		
-40 -												
-	- 30		3D	H	30-32	24/7	29-18-	ID 14078A	Ű	Dense, grav. wet. sandv SILT, some grav	el.	
-				X			22-30	w =9.4 %		trace clay (GLACIAL TILL)	,	
-									K	Boulder at 33 to 34 5 ft		
-45 -												
-	- 35		4D	H	36-38	24/5	13-16-			Very dense, grow wat growelly conty of	_	
-				M			23-27			(GLACIAL TILL)	'	
-50 -	[]			П								
Stratifica	tion lines i	eprese	l nt approxim	nate	mayba				12/12	(Continued Next Page)		
gradual. at times	Water lev and under	el readii conditio	es, iransitio ngs have b ons stated.	een	made							
Fluctuat other fa	ions of gro ctors than	undwate hose pr	er may occu esent at the	ur dı e tin	ue to ne						BORING	NO.: MR-44
measure	ernetius we	ie made				1					L	

S.W.COI	E L	clie Pro .oc	NT: _M JECT: ATION:	loffatt & N Sears Isl Sears Is	ichol and Offs sland, Se	B shore Wi earsport,	Normal Maine	GI	LOG	BORII SHEE PROJ DATE DATE	NG NO.: T: ECT NO. START: FINISH:	MB-4A 2 of 2 21-1242 6/27/2022 6/27/2022
Elev. Dep (ft) (ft)	th Cas Pe (b	sing en. pf)	Sample No.	SAMPL	E INFO Pen./ Rec. (in)	RMATIO Blow Count or RQD	N Field / Lab Test Data	Graphic Log	Sample Description & Classification	H De	l₂0 ₂pth	Remarks
-55	50		5D 6D 1R 2R	 40-42 45-45.2 46-50 50-54 54-57.8 	24/6 2/0 48/9 48/36	2-8-13- 44 50/2" 0 41			Dense, dark gray, wet, sandy SILT, some gravel, with weathered bedrock fragments (GLACIAL TILL) 45.2 Bedrock. Dark gray, SCHIST, hard; very slightly weathered; joints generally low angle (0-35°) to vertical (85-90°), very close (< 2 to close (2" to 1'), and tight to open, (PENOBSCOT FORMATION)	")		

Bottom of Exploration at 57.8 feet

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO .: MB-4A

E		CLI		Mof	fatt & N	lichol	B		G	LOG	BORING SHEET: PROJEC	NO.:	MB- 5 1 of 2 21-1242
SWO	COLE			<u> </u>	ears Isl Sears Is	and Offs sland, Se	anore Wi earsport,	na rerminal Maine			DATE ST	NISH:	7/6/2022
Drilli LOCA DRILL RIG T	ng Info TION: <u>N</u> ING CO.: YPE: SHIER TYPE	I. 2837 New New 	ion 89.815, E r England unted CM tomatic /	E. 8 Bo E 4 Saf	81331.25 ring Cont 5 ety	i45 I iractors I	ELEVATIC DRILLER: AUGER ID HAMMER	DN (FT):47 Sam Cooley /OD:N/A / N WEIGHT (Ibs)	. <u>6' +/</u> √A : _14	TOTAL DEPTH (FT): 55.7 LO DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 / 300 CASING ID/OD: 4 in / 4 1/2 in CO	GGED BY	: <u>Rick S</u> EL: <u>NQ</u>	eymour
WATE	R LEVEL	DEPT	HS (ft):	אנ: 	0.688 Iarine bo	ring	HAMMER	DROP (Incn):	307	16			
GENE KEY T AND S	RAL NOT O NOTES YMBOLS:	ES: <u>Wate</u> ⊈ At ⊈ At ⊈ Af	Borehole <u>er Level</u> time of Dri Completio ter Drilling	e log illing n of	gged fror Drilling	n mudline D = Split S U = Thin V R = Rock (V = Field \	ipoon Samp Valled Tube Core Sampl /ane Shear	le Pen. Sample Rec. e bpf = mpf =	= Pen = Rec Blows Minut	etration Length WOR = Weight of Rods S_v = Field overy Length WOH = Weight of Hammer q_u = Unc per Foot RQD = Rock Quality Designation Ø = Fricti e per Foot PID = Photoionization Detector N/A = No	I Vane Shea onfined Com on Angle (Es t Applicable	r Strength, pressive S stimated)	kips/sq.ft. trength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	_ G	Samplo			
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic I	Description & Classification	H ₂ 0 Depth	F	Remarks
-50 -			1D	X	0-2	24/24	WOR- 1-2-3	ID 14079A w =15.9 % W _L =24 W _P =15		Very soft, dark brown, wet, clayey silty 0.8 SAND, some gravel, with decomposed organics, (BAY MUD) Soft, gray, wet, gravelly sandy SILT, trace clay			
-55 -	- 5 - - -		2D	X	5-7	24/8	6-8-12- 13			Very stiff, gray, wet, gravelly SILT, some sand, trace clay			
-60 -	- - 10 - -		3D	X	10-12	24/5	22-29- 23-16			10.0 Dense to very dense, gray, wet, gravelly SAND and SILT (GLACIAL TILL)			
-65 -	- - - - - -		4D	X	15-17	24/10	15-16- 21-29			Dense, gray, wet, gravelly sandy SILT (GLACIAL TILL)			
-70 -	- - - 20 - -		5D	X	20-22	24/8	10-35- 21-16			becomes very dense			
-75 -	- - - 25 - -		6D	X	25-26.3	15/6	20-25- 50/3"			Very dense, gray, wet, gravely sandy SILT (GLACIAL TILL)			
-80 -	- - - - - -		7D	X	30-32	24/12	44-30- 49-48						
- 65 -	- - - - - - - - - - - - - - - - - - -		8D	X	35-35.8	10/8	45- 50/4"						
Stratific	ation lines	epreser	nt approxim	nate						(Continued Next Bogo)			
bounda gradual at times	ry between . Water lev and under	soil type el readir conditio	es, transitions have bons stated.	ons r een	nay be made					(Continued Next Page)			
Fluctua other fa measur	tions of gro ctors than t ements we	undwate hose pr	er may occi esent at th	ur dı e tin	ue to ne]	BORING	NO.:	MB- 5
-						•				I.			

S.W.O		CLI PRO	ENT: <u>M</u> DJECT: CATION:	loffatt & Ni Sears Isla Sears Is	ichol and Offs land, Se	B shore Wi earsport,	nd Terminal Maine	G	LOG	BOF SHE PRC DAT DAT	RING NO.: EET: DJECT NO IE START IE FINISH	MB- 5 2 of 2 21-1242 7/6/2022 7/6/2022
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	SAMPL Depth (ft)	E INFO Pen./ Rec. (in)	RMATIO Blow Count or RQD	N Field / Lab Test Data	Graphic Log	Sample Description & Classification		H₂0 Depth	Remarks
-90 - -90 -			9D	40-41.8	21/10	3-17- 49- 50/3"			44.0 Bedrock.	t		
-95 - -	- - - - - - - - - - - - - - - - - - -		R2	43-47.3 47.5- 52.2	56/54	25	Qu=3,940psi		Gray, SCHIST, hard; fresh to very slightly weathered; joints generally low angle (0-35°) to steep (55-85°), very close (< 2") to close (2" to 1'), and tight to slightly open (PENOBSCOT FORMATION)	3		
-100 - -	- - - - - - - - - - - - - - - - - - -		R3	52.2- 55.7	42/42	88	Qu=5,010psi		Pottom of Exploration at 55.7 fact			

BORING / WELL 10-12-2022 21-1242.GPJ SWCE TEMPLATE.GDT 12/14/22

	7					Е	BORIN	G I	LOG	BORING	NO.: MB-6
		CLIENT:	Мо	ffatt & N	lichol					PROJEC	T NO. 21-1242
		PROJECT	Г: _	Sears Isl	and Offs	shore Wi	nd Terminal			DATE ST	ART: 7/18/2022
S.W.C	COLE	LOCATIO	N:	Sears Is	sland, Se	earsport,	Maine			DATE FI	NISH: 7/18/2022
Drilli LOCA DRILL RIG T HAMM	ng Info TION: <u>N</u> ING CO.: YPE: <u>Sk</u> IER TYPE IER EFFI	rmation 1. 283608.775 New Englar id Mounted C Automatic CIENCY FAC	7, E. nd Bo ME 4 ; / Sa TOR	881504.6 pring Cont 45 fety : 0.688	354 [tractors]]	Elevatic Driller: Auger ID Hammer Hammer	DN (FT):29 Sam Cooley %OD:N/A / N WEIGHT (Ibs) DROP (inch):	N/A 140_30 /	TOTAL DEPTH (FT): 35.8 LC DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 / 300 CASING ID/OD: 4 in / 4 1/2 in CC 16 C	DGGED BY	EL: N/A
	R LEVEL	DEPTHS (ft)	: <u> </u>	Marine bo	ring						
KEY T AND S	O NOTES SYMBOLS:	Water Level	Drillin tion o	g f Drilling	D = Split S U = Thin V R = Rock (V = Field \	Spoon Samp Valled Tube Core Sampl /ane Shear	e Pen. : Sample Rec. : e bpf = mpf =	= Pene = Reco Blows Minut	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	d Vane Shea confined Com tion Angle (Es ot Applicable	r Strength, kips/sq.ft. pressive Strength, kips/sq.ft. stimated)
				SAMPL	E INFO	RMATIO	N	ß			
Elev. (ft)	Depth (ft)	Casing Pen. (bpf) No.	ble and	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	H ₂ 0 Depth	Remarks
-30 -		1D	N	0-2	24/24	6-5-6-9	ID 14082A w =11.3 %		Black, wet silty CLAY, some sand, organic	:	
				<u>N</u>			W _L =23 W _P =12		Stiff, gray, moist, silty CLAY, some sand		
-35 -	- 5 - - - - -	2D	X	5-7	24/23	15-20- 50-50	ID 14083A w =10.6 %		5.0 Very dense, gray, moist, clayey SILT and SAND, some fine gravel, trace clay (GLACIAL TILL)	_	
-40 -	- 10 - 10 	3D	X	10-12	24/14	19-50- 24-22			Very dense, gray, moist, gravelly sandy SILT (GLACIAL TILL)		
-45 - -	- - - - - -	4D	×	15-15.7	8/7	20- 50/2"					
-50 - -50 -	- 20 - 20 	5D	X	20-22	24/17	22-22- 23-28			Very dense, gray, wet, sandy gravelly SIL ⁻ (GLACIAL TILL)	r	
-55 -	- - 25 - -	6D	X	25-26.8	22/13	25-42- 47- 50/4"			Very dense, gray, wet, gravelly sandy SIL ⁻ (GLACIAL TILL)	Ţ	
-60 -	- 30 - 30 	7D	X	30-31.5	18/15	27-50- 50					Rig action indicates probable cobbles below 31.5 feet
-65 -	- 35	8D		35-35.8	10/4	37- 50/4"			Bottom of Exploration at 35.8 feet		
Stratific bounda gradual at times	ation lines r ry between . Water leve and under	epresent appro soil types, trans el readings have conditions state	ximate sitions beer ed.	e may be n made							
Fluctuat other fa measur	tions of gro ctors than t ements wer	undwater may o hose present at re made.	ccur o the ti	tue to me						BORING	NO.: MB-6

F							E	BORIN	G I	LOG		B		NO.: MB-6A
		CLI	ENT: N	loff	fatt & N	lichol						0	ROJEC	T NO. 21-1242
		PRO	JECT:	S	ears Isl	and Offs	hore Wi	ind Terminal				D	ATE ST	ART: 7/19/2022
S.W.C	COLE	LOC	CATION:	5	Sears Is	sland, Se	earsport,	Maine				D	ATE FI	NISH: 7/19/2022
Drilli	ng Info	rmat	ion											
LOCA	TION: _ N	1. 2836	07.3351,	E. 8	881500.9	658 E	ELEVATIO	ON (FT):32	' +/-		TOTAL DEPTH (FT): 39.0	LOG	GED BY:	Rick Seymour
DRILL	ING CO.:	New	England	Bor	ring Cont	tractors C	ORILLER:	Sam Cooley			DRILLING METHOD: Cased E	Boring		
	YPE: <u>S</u>		Inted CME	<u>= 4</u> 5	5 otv	A)/OD: <u>N/A / N</u>	₩A • 1/1	<u>) / 300</u>	CASING ID/OD: 4 in / 4 1/2 in	oon COP		
НАММ	IER EFFI		Y FACTO	R:	0.688	'		DROP (inch):	30 /	16		_ 000		
WATE	R LEVEL	DEPT	HS (ft):	М	larine bo	ring		- (-)						
GENE	RAL NOT	ES:	Borehole	e log	gged fror	n mudline.								
KEY T AND S	O NOTES YMBOLS:	<u>Wate</u> ∑ At ∑ At	<u>r Level</u> time of Dril Completior ter Drilling	ling 1 of	Drilling	D = Split S U = Thin W R = Rock O V = Field W	poon Samp /alled Tube Core Sampl /ane Shear	ble Pen. = e Sample Rec. = le bpf = mof =	= Pene = Reco Blows	etration Length overy Length per Foot	WOR = Weight of Rods S WOH = Weight of Hammer C RQD = Rock Quality Designation Q PID = Photoionization Detector A	$S_v = Field V$ $q_U = Uncon$ $\emptyset = Friction$ V/A = Not 4	ane Shea fined Com Angle (Es	r Strength, kips/sq.ft. pressive Strength, kips/sq.ft. stimated)
-		- <u>+</u> A			SAMPL		RMATIC)N						
FIOV	Denth	Casing		Π			Blow		ĽČ		Sample		H ₋₀	
(ft)	(ft)	Pen. (bpf)	Sample	/be	Depth	Pen./	Count	Field / Lab	aphic		Description &		Depth	Remarks
		,	No.	۴Ì	(ft)	(in)	or RQD	Test Data	Ğ		Classification			
<u> </u>				H					+	See	boring MB-6 for description of			
	Í									sub	surface strata from 0 to 35.5 ft.			
-35 -	ļ													
	+													
· ·	- 5													
· ·	+													
10 -	İ													
-40	L													
· .	- 10													
· ·	+													
· · ·	+													
-45 -	Ì													
	15													
.	+													
·	+													
-50 -	+													
	- 20													
	+													
-55 -	+													
. I	† _													
	25													
	ļ													
-60 -	+													
	+													
	- 30													
-	t													
-65 -	ļ													4" casing refusal at
. Ť	+													roller cone to 39 ft
	- 35													Probable blow in
·	+									35.8 - Prol	pable Glacial Till		1	below ±35 ft
70	<u>†</u>													
-/0 -	Ē								Ø		B <i>u</i> c c c c c c c c c c			
Stratifia	ation lines	onroad	t approvin	ato		1					Bottom of Exploration at 39.0 f	eet		
bounda	ry between	soil type	es, transitio	ate ns n	nay be									
at times	and under	conditio	igs nave be ons stated.	en l	inade									
other fa	ctors than t	hose pr	esent at the	e tim	ie io ie							В	ORING	NO.: MB- 6A
measur	ernerits we	re made				I						I =		

E							B	ORIN	G	_OG	BORING SHEET:	NO.: <u>MB-7</u> 1 of 2
		CLI	ENT: _N	Лof	ffatt & N	ichol					PROJECT	F NO. 21-1242
		PRO	OJECT:	S	Sears Isla	and Offs	shore Wi	nd Terminal			DATE ST	ART: <u>7/7/2022</u>
S.W.C	COLE	LOC	CATION	:	Sears Is	land, Se	earsport,	Maine			DATE FIN	IISH: <u>7/7/2022</u>
Drillin LOCA ⁻ DRILLI RIG TY HAMM	ng Info FION: <u></u> ING CO.: (PE: <u>SH</u> ER TYPE ER EFFI	1. 2835 New kid Mou E: Au CIENC	ion 508.6306, v England unted CM tomatic /	E. Bo E 4 Saf	881246.0 rring Conti 5 fety 0.688	181	ELEVATIC DRILLER: AUGER ID HAMMER HAMMER	DN (FT):47 Sam Cooley //OD:N/A / N WEIGHT (Ibs) DROP (inch):	V/A <u>14</u> <u>30</u> /	TOTAL DEPTH (FT): 57.0 LC DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0/300 CASING ID/OD: 4 in / 4 1/2 in CC 16 C C C	GGED BY:	John Cozens
		DEPT	HS (ft):	<u></u>	Aarine bor	ring						
KEY TO AND S	O NOTES YMBOLS:	Uate ⊻ At ¥ At ¥ Af	er Level time of Dri Completio	illing n of	g f Drilling	D = Split S U = Thin V R = Rock (V = Field \	Spoon Samp Valled Tube Core Sampl /ane Shear	le Pen. Sample Rec. e bpf = mpf =	= Pene = Reco Blows Minut	tration LengthWOR = Weight of Rods $S_v = Fiel$ very LengthWOH = Weight of Hammer $q_u = Unc$ per FootRQD = Rock Quality Designation $\emptyset = Frict$ per FootPID = Photoionization DetectorN/A = Na	d Vane Shear onfined Comp ion Angle (Est ot Applicable	Strength, kips/sq.ft. ressive Strength, kips/sq.ft. imated)
					SAMPL	E INFO	RMATIO	N	b			
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification	H ₂ 0 Depth	Remarks
-	_		1D	M	0-2	24/24	WOH- 3-6-8			Soft, black, wet, sandy SILT, organic odor,	Г	
-50 — -										Medium dense, gray, wet, sandy SILT, some gravel trace clay		
- - -55 —	- 5		2D	X	5-7	24/12	2-4-8- 14	ID 14084A w =7.6 %	0 0 0	5.0 Medium dense, gray, wet, silty sandy GRAVEL, some clay		
- - - -60	- - 10 -		3D	X	10-12	24/22	5-5-9-9		000			
-65 -	- - - - -		4D	X	15-17	24/17	5-6-7-8		0000	Medium dense, gray, wet, sandy SILT, some gravel, trace clay		
- - - -70 —	- 20		5D	X	20-21.3	15/14	43-59- 50/3"		•	20.0 Very dense, gray, wet, gravelly sandy SILT (GLACIAL TILL)		
-	- 25					0/0	50/0"			23.0 cobbles/boulder from 23 to 26 ft		
-75 — -	- - - -				20-20.2	212	50/2			(GLACIAL TILL)		
- - -80 -	- 30 											
- -85 -	- 35		7D	X	35-35.3	4/2	60/4"			Very dense, gray, wet, sand gravelly SILT (GLACIAL TILL)		
Stratifica boundar gradual.	ation lines r y between Water lev	eprese soil typ el readi	nt approxim es, transitio ngs have b	nate ons i een	may be made		1	1	<u></u>	(Continued Next Page)		
at times Fluctuat other fai	and under ions of gro	conditio undwate	ons stated. er may occi resent at th	ur d e tin	ue to ne							
measure	ements we	re made	e.	o un							BORING	NO.: MB-7

\square						B	ORIN	GI	LOG	BC SH		NO.:	MB-7
	CL		Mot	ffatt & Ni	ichol					PR	OJEC	t no.	21-1242
	PR	OJECT:	S	Sears Isla	and Offs	hore Wi	nd Terminal			DA	TE ST	ART:	7/7/2022
S.W.COLE		CATION	:	Sears Is	land, Se	earsport,	Maine			DA		NISH:	7/7/2022
				SAMPL	E INFO	RMATIO	N	bg					
Elev. Depth (ft) (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification		H₂0 Depth		Remarks
		1R 2R 3R		45-47 47-52 52-57	24/18 60/54 60/60	RQD 0 68 88	Qu=3,460psi		44.0 Bedrock Advanced by roller cone to 45 ft. Gray, SCHIST, hard; fresh to very slightly weathered; joints generally low angle (0-35°) to moderately steep (35-55°), occasionally steep (55-85°), very close (< 2") to moderately close (1'-3'), and tight to open, (PENOBSCOT FORMATION) Bottom of Exploration at 57.0 feet				

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.: MB-7

SWO		CLIE PRC LOC	ENT: <u>N</u> DJECT: CATION	/lof 	fatt & N ears Is Sears Is	lichol land Offs sland, Se	Bhore Wi earsport,	Normal Maine	G	LOG	BORING SHEET: PROJEC DATE S ⁻ DATE FI	NO.: MB- 8 1 of 3 CT NO. 21-1242 TART: 7/14/2022 NISH: 7/15/2022
Drilli LOCA DRILL RIG TY HAMM WATE GENE	ng Info TION: _ ING CO.: (PE: _Sk IER TYPE IER EFFI R LEVEL RAL NOT	I rmati I. 28320 New Kid Mou E: Aut CIENC DEPTI ES:	68.6622, England Inted CM comatic / Y FACTO HS (ft): Borehold	E. 8 Boi E 49 Safe DR:	881440.5 ring Con 5 ety 0.688 larine bo	5637 E tractors C // // // / / / / / / / / / / / / / /	ELEVATIC DRILLER: AUGER ID HAMMER HAMMER	DN (FT):18 Sam Cooley //OD:N/A / N WEIGHT (Ibs) DROP (inch):	8.2' +/- V/A : _14 _30 /	TOTAL DEPTH (FT): 95.0 L DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 / 300 CASING ID/OD: 4 in / 4 1/2 in C 16	L DGGED BY	: <u>Rick Seymour</u>
KEY T AND S	O NOTES YMBOLS:	Water ∑ At Ţ At Ţ At	<u>r Level</u> time of Dri Completio er Drilling	illing n of	Drilling	D = Split S U = Thin W R = Rock (V = Field V	poon Samp Valled Tube Core Sampl /ane Shear	le Pen. Sample Rec. e bpf = mpf =	= Pene = Reco Blows Minut	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ld Vane Shea confined Com tion Angle (Es lot Applicable	r Strength, kips/sq.ft. pressive Strength, kips/sq.ft. stimated)
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	SAMPL Depth (ft)	E INFO Pen./ Rec. (in)	RMATIO Blow Count or RQD	N Field / Lab Test Data	Graphic Log	Sample Description & Classification	H ₂ 0 Depth	Remarks
-20	- - -		1D	X	0-2	24/10	17-10- 12-17	ID 14086A w =10.6 % W _L =23 W _P =14		Medium dense, gray-brown, moist, clayey silty SAND, trace fine gravel	· · · · · · · · · · · · · · · · · · ·	
-25 -	- 5 - 5 -		2D	X	5-7	24/24	3-8-9- 11			5.4 6.1 Some silt Medium dense, brown-gray, wet, gravelly SILT and SAND		
- -30 -	- - 10 -		3D	X	10-12	24/8	5-9-9-9			Medium dense, gray-brown, wet, gravelly sandy SILT		
- -35 — -	- - 15 -		4D	X	15-17	24/9	8-10- 14-13	ID 14087A w =13.4 %		Medium dense, gray, wet, sandy SILT, some fine gravel, some clay		
-40 -	- 20 		5D	X	20-22	24/0	13-13- 16-14			No recovery		
	- 25 		6D	X	25-27	24/13	20-25- 28-32			25.0 Very dense, gray, moist, gravelly SILT an SAND (GLACIAL TILL)	d	
	- 30 		7D	X	30-30.2	2/0	50/2"			No recovery		
-12-2022 21-1242.6P			8D	X	35-36.2	14/9	43-50- 50/2"			Very dense, gray, damp, gravelly sandy SILT (GLACIAL TILL)		
Stratification boundar gradual at times Fluctuat other fa measure	ation lines r ry between . Water leve and under ions of gro ctors than t ements we	epresen soil type el readin conditio undwate hose pre re made.	at approximes, transitions ligs have be ons stated. ar may occu esent at the	nate ons r een ur du e tim	may be made ue to ne				- IA / #+	(Continued Next Page)	BORING	NO.: MB- 8

	7						B	ORIN	GΙ	LOG	BC		NO.: _	MB-8
	=	CLI		/lof	fatt & Ni	chol					PR		T NO.	21-1242
S.W.	COLE		CATION:	<u> </u>	ears Isla Sears Is	and Offs land, Se	arsport,	nd Terminal Maine				TE FI	NISH:	7/14/2022 7/15/2022
					SAMPL	E INFO	RMATIO	N	og					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification		H₂0 Depth		Remarks
-60 - -65 -	- - - - - - - 45 - -		9D	X	45-47	24/10	14-32- 36-41							
-70 -			10D	X	55-56.8	21/10	16-27- 40- 50/3"			Very dense, gray, damp, sandy gravelly SILT (GLACIAL TILL)				
-80 -			11D	X	65-67	24/10	15-35- 45-45							
-90 -			12D	X	75-77	24/7	17-28- 45-45			Very dense, gray-brown, moist, gravelly sandy SILT, trace clay (GLACIAL TILL)				
			13D	X	85-86.2	14/9	15-50- 50/2"			85.0 hard, gray, moist, silty CLAY, trace sand, trace gravel Advanced by roller cone to 95 ft				
Stratific bounda gradua at time Fluctua other fa measu	cation lines ary betweer I. Water lev s and unde ations of gro actors than rements we	represer soil type rel readir conditio undwate those pro- re made	nt approxim es, transitio ngs have be ons stated. er may occu esent at the	iate ins r een ur du e tim	may be made ue to ne					(Continued Next Page)	вс	ORING	NO.:	MB- 8

E							B	ORIN	GI	LOG	BC SH	RING NIEET:	NO.: _	MB- 8 3 of 3
		CLI	ENT: _N	/lof	fatt & N	ichol					PR	OJECT	NO.	21-1242
		PRO		<u> </u>	ears Isla	and Offs	hore Wi	nd Terminal Maine				TE STA	ART:	7/14/2022
5.W.C	OLE			· _`		ianu, Se	aisport,	Maine	1				ы.	1113/2022
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	E INFO Pen./ Rec. (in)	RMATIO Blow Count or RQD	N Field / Lab Test Data	Graphic Log	Sample Description & Classification		H₂0 Depth		Remarks
-	- - - <u>95</u> -									Pottom of Exploration at 05.0 foot				
													-INISH: /115/2022 h Remarks	
tratifica oundar radual. t times luctuati	tion lines y between Water lev and under ions of gro	represer soil type el readir conditio oundwate those pr	nt approxim es, transitio ngs have be ons stated. er may occu esent at the	nate ons r een ur du e tim	nay be made ue to ne						во	ORING N	NO.:	MB. S
E							B	ORIN	G	LOG	BORING	NO.: _	MB-9	
---------------------	---------------------------	-----------------------------	---	----------------	-----------------------	--	--	--	------------------------------------	---	---	--	-------------------------------------	
		CLI	ENT: N	/lof	fatt & N	ichol					PROJEC	T NO.	21-1242	
		PR	OJECT:	S	Sears Isl	and Offs	shore Wi	nd Terminal			DATE ST	ART:	7/11/2022	
S.W.O	COLE	LO	CATION	:	Sears Is	sland, Se	earsport,	Maine			DATE FI	NISH: _	7/11/2022	
	ng Info TION: <u>1</u>	ormat N. 2831	ion 188.0361, v England	E.	881181.1 ring Cont	534 I	ELEVATIO	DN (FT):	.7' +/-	TOTAL DEPTH (FT): 56.5 LC	GGED BY:	Rick S	Seymour	
RIG T	YPE: SI	kid Mo	unted CM	E 4	5		AUGER ID	/OD: N/A / N	J/A	SAMPLER: Standard Split-Spoon				
НАММ	IER TYP	E: Au	tomatic /	Saf	fety	I	HAMMER	WEIGHT (lbs)	: 14	0 / 300 CASING ID/OD: 4 in / 4 1/2 in CO	ORE BARRI	EL: <u>N</u> /A	\	
HAMM	IER EFFI	CIENC	YFACTO	DR:	0.688	I	HAMMER	DROP (inch):	30 /	16				
		. DEP I	HS (ft): Borebok	<u></u>	larine boi	ring n mudline								
KEY T AND S	O NOTES YMBOLS:	<u>Wate</u> ⊻ At ¥ At	<u>er Level</u> time of Dri Completio	illing n of	ggod Horr Drilling	D = Split S U = Thin V R = Rock (V = Field \	poon Samp Valled Tube Core Sampl /ane Shear	le Pen. Sample Rec. e bpf = mpf =	= Peno = Reco Blows Minut	tration Length WOR = Weight of Rods S_v = Fiel wory Length WOH = Weight of Hammer q_u = Unic per Foot RQD = Rock Quality Designation Ø = Fric e per Foot PID = Photoionization Detector N/A = N	d Vane Shear confined Com tion Angle (Es ot Applicable	r Strength, pressive S stimated)	kips/sq.ft. trength, kips/sq.ft.	
					SAMPL	E INFO	RMATIO	N	D D					
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification	H₂0 Depth	1	Remarks	
-	-		1D	N	0-2	24/18	3-37-			0.5 Soft, dark gray, wet, SILT, trace sand,	Г			
	-			Д			20-9			organic odor (BAY MUD)				
-50 -	F								0	Medium dense, gray-brown, moist, gravell	y/			
	÷ _))	SAND, some silt, some clay				
	- 5		2D	\mathbb{N}	5-7	24/10	6-11-9-	ID 14088A w =10.3 %	0					
				μ					0					
-55 -	ł								0					
	-								0					
	- 10		3D	X	10-11.1	13/12	32-50-		T	10.0 Dense, gray, wet, silty SAND, some fine				
	[Γ			50/1			gravel				
-60 -	1													
	-													
-	- 15		4D		15-15.8	9/9	19-			15.0 Very dense, gray, moist, sandy SILT and				
	-						50/5			GRAVEL (GLACIAL TILL)				
-65 -	1													
	ł													
	- 20		5D	H	20-20.1	1/0	50/1"			No recovery				
	-													
-70 -														
-70	-													
-	- 25		6D		25-25.8	10/4	42-		<i>H</i>					
-	ſ						50/4"							
75	1													
-/5 -]													
	- 30		7D	×	30-30.4	5/0	50/5"			No recovery				
	ł								Ø					
	[
-80 -]													
	- 35		8D		35-36.3	15/6	29-40-			Dense, grav. wet. gravellv sandv SII T				
	ł			А			50/3"		K	(GLACIAL TILL)				
	ſ													
-85 -	1													
Stratific bounda	ation lines	represe soil typ	nt approxim es, transitio	nate ons i	may be				<u>v / 10</u>	(Continued Next Page)				
gradual at times	and unde	ei readi r conditi	ngs nave b ons stated.	een	made									
other fa	ctors than	those pr	esent at the	e tin	ne						BORING	NO.:	MB- 9	
measur	oments we	re made				I								

	CLI	ENT: _M	1offatt & Ni	ichol	В	ORIN	GI	LOG	BC SH PR	RING EET: OJEC	NO.: MB- 9 2 of 2 T NO. 21-1242
	PR		Sears Isla	and Offs	shore Wi	nd Terminal Maine					ART: 7/11/2022
S.W.COLE			SAMPL	E INFO	RMATIO	N					
Elev. Depth (ft) (ft)	Casing Pen. (bpf)	Sample No.	ed Depth ⊢ (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification		H₂0 Depth	Remarks
		9D 10D	⊻ 45-45.9	11/4	16- 50/5" 21-25-						
								SILT, trace clay (GLACIAL TILL) Bottom of Exploration at 56.5 feet			

Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

BORING NO.: MB- 9

							E	ORIN	GI	LOG		BO	RING N	I O .: _	MB- 9A
'=		CU		1of	fatt & N	lichol									<u>1 of 2</u> 21-1242
		PRO	DJECT:	S	ears Is	land Offs	hore Wi	nd Terminal				DA	TE STA	RT:	7/13/2022
SWO	OLE	LOC	CATION		Sears I	sland, Se	earsport,	Maine				DA	TE FINI	SH: _	7/13/2022
Drilli	ng Info	rmat	ion												
		I. 2831	83.8986,	E. 8	881174.´	1138 E		DN (FT):	+/-		TOTAL DEPTH (FT): 54.0 L	OGGE	ED BY:	Rick S	Seymour
RIG T	YPE: Sk	id Mou	inted CM	БО = 4	nng Con 5		UGER ID	OD: N/A / N	I/A		SAMPLER: Standard Split-Spoon	}			
HAMM		E: Au	tomatic / S	Saf	ety	· H	AMMER	WEIGHT (lbs):	14	0 / 300	CASING ID/OD: 4 in / 4 1/2 in 0	ORE	BARREL	.: N/A	4
HAMM	IER EFFI	CIENC	Y FACTO	R:	0.688	ŀ	AMMER	DROP (inch):	30 /	16					
WATE	R LEVEL	DEPT	HS (ft):	N	larine bo	ring									
GENE	RAL NOT	ES:	Borehole	e log	gged from	m mudline.									
AND S	ONOTES YMBOLS:	<u>Wate</u> ∑ At ∑ At ∑ Af	<u>r Level</u> time of Dril Completion ter Drilling	lling 1 of	Drilling	D = Split S U = Thin W R = Rock (V = Field V	poon Samp /alled Tube Core Sampl ′ane Shear	e Pen. = Sample Rec. = e bpf = mpf =	= Pene = Reco Blows Minute	etration Length overy Length per Foot e per Foot	WOR = Weight of Roas $S_v = H$ WOH = Weight of Hammer $q_u = U$ RQD = Rock Quality Designation Ø = Fr PID = Photoionization Detector N/A =	eld Van nconfine ction Ar Not App	e Shear S ed Compre ngle (Estin blicable	trength essive S nated)	, kips/sq.ft. }trength, kips/sq.ft.
					SAMPI		RMATIO	N	bo						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L		Sample Description & Classification		H ₂ 0 Depth	I	Remarks
	+									See sub	boring MB-9 for description of surface strata from 0 to 54 ft. (Botton	n of			
	+									exp	oration)				
-50 -	Ţ														
	- 5														
	‡														
-55 -	+														
	10														
	+ "														
	+														
-00-	Į I														
· ·	- 15														
	Į														
-65 -	+														
	- 20														
.	- 20														
	+														
-70 -	Į														
	- 25														
	‡														
-75 -	+														
	± 20														
	- 30														
	+														
-80 -	Į														
	- 35														
	‡														
-85 -	+														
Stratific	ation lines	epreser	nt approxim	ate							(Continued Next Page)				
bounda gradual	ry between . Water lev	soil type el readir	es, transitio ngs have be	ns r een	nay be made						(Commueu Next Fage)				
Fluctuat other fa	tions of gro ctors than t	undwate	nis stated. er may occu esent at the	ır du e tim	ue to ne										
measur	ements we	re made	at uit									ВО	RING N	0.:	MR- A

				B	ORINO	GΙ	LOG		NO.: MB-9A
		Noffatt & N	ichol					PROJEC	T NO. 21-1242
SWCOLE	PROJECT:	Sears Isl	and Offs and Se	hore Will	nd Terminal Maine			DATE ST	TART: 7/13/2022 NISH: 7/13/2022
S.W.COLE		SAMPI		αιοροιι <u>,</u> ανατιο	N				
Elev. Depth (ft) (ft)	Casing Pen. (bpf) Sample No.	Depth	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log	Sample Description & Classification	H₂0 Depth	Remarks
-90 + 45 + 45 -95 + 50 + 100 + 100							Bottom of Exploration at 54.0 feet		3" casing refusal at 53 ft, advanced by roller cone to 54 ft. Rig action indicates difficult drilling past 53 ft.
Stratification lines r boundary between gradual. Water leve at times and under Fluctuations of gro other factors than t measurements we	represent approxim soil types, transitic el readings have b r conditions stated. undwater may occu those present at th re made.	nate ons may be een made ur due to e time						BORING	NO.: MB- 9A

	Ϊ						E	ORIN	GI	LOG			BORING	NO.: _	MB-9B
'=		СЦ	ENT: N	/lof	fatt & N	ichol							PROJEC		21-1242
	フ	PR	DJECT:	S	ears Isl	and Offs	hore Wi	nd Terminal					DATE ST	ART:	7/20/2022
SWO	COLE	LO	CATION	: 3	Sears Is	land, Se	earsport,	Maine					DATE FI	NISH:	7/21/2022
Drilli		ormat	ion	ES	281178 1	968 F		N (ET): _46	0' +/			I		Bick	Sevmour
DRILL	ING CO.	•. 2032 : New	/ England	Bor	rina Cont	ractors	DRILLER:	Sam Coolev	.9 +/-	<u>.</u>	DRILLING METHOD: Cased	Borina	GGED BT		beymour
RIG T	YPE: S	kid Mo	unted CM	E 4	5	4	UGER ID	/OD: N/A / N	/A		SAMPLER: Standard Split-S	poon			
НАММ	IER TYP	E: Au	tomatic /	Safe	ety	ł	AMMER	WEIGHT (lbs):	14	0 / 300	CASING ID/OD: _4 in / 4 1/2 in	<u> </u>	RE BARR	EL: <u>N/</u>	4
HAMM	IER EFF	CIENC	Y FACTC	R:	0.688	H	IAMMER	DROP (inch):	30 /	16					
		DEPT	HS (ft):		larine boi	ng mudling									
KEY T	O NOTES	Wate	er Level	5 10(ygeu iron	D = Split S	poon Sam	le Pen.=	Pene	tration Length	WOR = Weight of Rods	S., = Field	Vane Shea	r Strenath	. kips/sa.ft.
AND S	YMBOLS	⊻ At ▼ At ▼ At	time of Dri Completion ter Drilling	lling n of	Drilling	U = Thin W R = Rock (V = Field V	/alled Tube Core Sampl /ane Shear	e Sample Rec. = bpf = mpf =	= Reco Blows Minut	overy Length per Foot e per Foot	WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	q _U = Unco Ø = Fricti N/A = No	onfined Com on Angle (Es t Applicable	pressive stimated)	Strength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	Log		Sample				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic		Description & Classification		H ₂ 0 Depth		Remarks
	-									See sub	boring MB-9 for description of surface strata from 0 to 56.5 ft				
-	ł														
-50 -	1														
-	- 5														
-	ł														
-55 -															
-00	-														
	- 10														
-	+														
60 -	Ţ														
-00	ł														
	- 15														
-	ł														
-65 -															
	+														
	- 20													Rig ac	tion indicates
-	Į													tough	drilling, de cobbles
-70 -]													advan	cing roller cone
	ł													10 28	
	- 25														
-	Ţ														
-75 -]														
-	┢								1						
	- 30								1						
-	Ţ								1						
-80 -	Ļ														
	ł								1						
	- 35								1						
	1								1						
-85 -	ł														
Stratific		roproso													
bounda	ry between	el readi	es, transitio	een	nay be made						(Continued Next Page)				
Fluctuat other for	tions of gro ctors than	undwate	er may occu esent at the	ur du e tim	ue to lie							г	DOD		
measur	ements we	ere made	eseri di the	o ulfi									BORING	NO.:	MB- 9B

6							E	BORING	GΙ	LOG	BORIN	NG NO.: _ T:	MB-10 1 of 1
		CLI	ENT: N	/loff	att & N	ichol					PROJ		21-1242
		PRC	DJECT:	<u></u>	ears Isl	and Offs	shore Wi	nd Terminal			DATE	START:	6/28/2022
S.W.C	COLE					sianu, Se	earsport,	Maine			DATE		0/20/2022
Drillin Locat DRILLI RIG TY HAMM HAMM	ng Info FION: <u>h</u> NG CO.: (PE: <u>SI</u> ER TYPI ER EFFI R LEVEL	N. 2829 N. 2829 New Cienc Cienc	ion 27.0628, r England inted CMI tomatic / : Y FACTC HS (ft):	E. 8 Bor E 45 Safe Safe DR:	81094.2 ing Cont 5 2ty 	195 E rractors C / / / / / / / / / /	Elevatic Driller: Auger IC Hammer Hammer	DN (FT):47' Sam Cooley D/OD:N/A / N WEIGHT (Ibs): DROP (inch):	+/- /A 	TOTAL DEPTH (FT): 40.0 Li DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0/300 CASING ID/OD: 4 in / 4 1/2 in C 16 Cased Boring C	OGGED F	BY: <u>John</u>	Cozens
GENE	RAL NO	TES:	Borehole	e log	ged fron	n mudline							
KEY TO AND S	O NOTES YMBOLS:	<u>Wate</u> ⊻ At ⊻ At ⊻ Aft	<u>r Level</u> time of Dri Completion er Drilling	lling n of [Drilling	D = Split S U = Thin W R = Rock (V = Field V	poon Samp Valled Tube Core Samp /ane Shear	e Sample Pen. = Sample Rec. = le bpf = f mpf =	Pene Reco Blows Minute	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Id Vane Sh confined C ction Angle lot Applical	near Strength compressive \$ (Estimated) ble	, kips/sq.ft. Strength, kips/sq.ft.
					SAMPL	E INFO	RMATIC	N	bo				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	H ₂ Dep	₂0 pth	Remarks
-	-		1D	М	0-1.8	22/20	17-30- 56-			Soft, black to dark gray, wet, sandy SILT,	7		
-50 -	-						50/4"			Very dense, gray, wet, silty sandy GRAVE some clay	/ EL		
-	- 5		2D	X	5-6.9	23/16	20-47- 51- 50/5"	ID 14089A w =11.9 %		5.0 ⁻ Hard, gray, wet, SILT and SAND, some gravel			
-55 — -	-												
-	- 10		3D	X	10-12	24/18	16-29- 31-33			10.0 Very dense, gray, wet, sandy SILT, some gravel (GLACIAL TILL)			
-60	- 15 		4D	X	15-17	24/19	8-30- 32-42			Very dense, gray, wet, gravelly sandy SIL (GLACIAL TILL)	т		
-70 -	- - 20 -		5D	X	20-22	24/5	15-39- 39-55						
	- - 25 -		6D	X	25-26.3	15/7	29-30- 50/3"			bedrock fragments below ±25 ft			
-75 -	- - - 30		1R		28.5- 32.5	48/48	54	Qu=18,580psi		^{28.5} Bedrock. Gray, SCHIST, hard; fresh to very slightly	,		
	-		2R	H	32.5- 36.5	48/36	0			weathered; joints generally low angle (0-35°) to vertical (85-90°), very close (< to close (2" to 1'), and tight to open, (PENOBSCOT FORMATION)	2")		
	- 35 - -		3R	-	35-40	60/35	58	Qu=14,820psi					
									\bigotimes				
boundar gradual. at times Fluctuat	with the second	epresen soil type el readin conditio undwate	n approxim es, transitio ligs have bo ons stated. er may occu	uate ons m een r ur du	nay be made e to					Bottom of Exploration at 40.0 feet			
other fac measure	ctors than ements we	those pre re made	esent at the	e time	e						BORIN	NG NO.:	MB-10

E							B	ORIN	G	LOG	BORING	NO.:	LB-1
		CLI	ENT: _N	Лоf	fatt <u>& N</u> i	chol					PROJEC	T NO.	21-1242
		PRC	DJECT:	S	ears Isla	and Offs	shore Wi	nd Terminal			DATE ST	ART:	8/18/2022
S.W.C	OLE	LOC	CATION	: _	Sears Is	land, Se	earsport,	Maine			DATE FI	NISH:	8/18/2022
Drillir LOCAT DRILLI RIG TY HAMMI HAMMI	ng Info TION: <u>N</u> G CO.: 'PE: <u>T</u> r ER TYPE ER COR	rmati I. 2847 S. W ack Mc E: _Aut	ion 62.4, E. 8 /. Cole Ex ounted CM tomatic ON FACT	3829 xplo	907.0801 prations, L 850 2: 0.852		ELEVATIC DRILLER: AUGER ID HAMMER HAMMER	N (FT):26' Jeff Lee /OD:N/A / N WEIGHT (Ibs): DROP (inch):	+/- I/A 30	TOTAL DEPTH (FT): 42.0 LC DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 CASING ID/OD: 4 in / 4 1/2 in CC	DGGED BY:	John C	Cozens
WATER	R LEVEL	DEPT	HS (ft):	_ <u>s</u>	oils satur	ated belo	w 10'						
KEY TO AND SY	RAL NOT D NOTES YMBOLS:	ES: <u>Wate</u> ⊈ At ⊈ At ⊈ Af	<u>r Level</u> time of Dri Completio ter Drilling	illing n of	Drilling	D = Split S U = Thin V R = Rock (V = Field \	poon Samp Valled Tube Core Sampl /ane Shear	le Pen. = Sample Rec. = e bpf = mpf =	= Pene = Reco Blows Minut	etration Length WOR = Weight of Rods S_v = Fiel overy Length WOH = Weight of Hammer q_u = Unc per Foot RQD = Rock Quality Designation Ø = Fric e per Foot PID = Photoionization Detector N/A = N	d Vane Shear confined Com tion Angle (Es ot Applicable	Strength, pressive S stimated)	kips/sq.ft. trength, kips/sq.ft.
					SAMPL	E INFO	RMATIO	N	ß				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	H₂0 Depth	F	Remarks
25 -	_		1D	M	0-2	24/18	2-2-7- 11			0.3 Forest duff			
-	-			Δ						Medium stiff, light brown, sandy SILT, with 2.0 rootlets Very stiff, brown, silty CLAY, some sand	/		
- 20 — -	- 5 -		2D	X	5-7	24/24	4-4-6-9	q _P =5.0-6.0 ksf ID 14228A w =24.4 % W _L =43 W =17		7.0 Medium stiff, light brown, SILT and SAND	,		
- - 15 — -	- 10 -		3D	X	10-12	24/16	4-2-3-3	ID 14229A w =14.2 %		trace gravel			
- - 10 —	- - 15 -		4D	X	15-17	24/21	3-5-5-7			13.0 Medium stiff to stiff, gray, SILT and SAND trace fine gravel (GLACIAL TILL)	,		
5 —	- 20 		5D	X	20-22	24/6	3-3-4-6						
	- 25 		6D	X	25-27	24/20	27-22- 17-20			27.0 Very stiff to hard, gray, SILT and SAND,			
	- 30 -		7D	X	30-30.9	11/6	18- 50/5"				_)		
	- 35 - -		8D	X	35-37	24/18	13-20- 31-31						
Stratifica	ation lines r	epreser	 nt approxim	 nate					¢6/,	(Continued Next Page)			
boundar gradual. at times Fluctuati	y between Water lev and under ons of gro	soil type el readir conditio undwate	es, transitions have b ons stated. onr may occu	ons r een ur di	may be made ue to					(Conunaed Next Fage)			
other fac measure	ctors than t ements we	hose pro	esent at the	e tin	ne						BORING	NO.:	LB-1

	4						В	BORIN	G	LOG		BC		NO.: _	LB-1
<i>'</i>			CLI	ENT: Mo	ffatt & N	ichol						PR	OJEC	T NO.	21-1242
			PRO	JECT:	Sears Isl	and Offs	shore Wi	nd Terminal					TE ST	ART:	8/18/2022
5	S.W.C	OLE	LOC	CATION: _	Sears Is	sland, Se	earsport,	Maine				_ DA	TE FIN	NISH:	8/18/2022
					SAMPL	E INFO	RMATIO	N	5						
E	Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample a No. ⊢	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	 Graphic Lo		Sample Description & Classification		H₂0 Depth		Remarks
· [-15 —	-		9D	40-42	24/19	17-21- 24-24								
					1		•			Bottom	of Exploration at 42.0 feet				
10/23															
DT 1															
TE.G															
MPLA															
E TE															
SWC															
CGPJ															
-1242															
22 21															
12-20:															
- 10-	Stratificat	tion lines	represer	nt approximate	9										
/ WEL	oundary radual.	/ between Water lev	soil type	es, transitions	may be made										
9NIC	t times a luctuation	and under ons of gro	conditio	ons stated. er may occur d	lue to										
BOF	neasure	ments we	re made	esent at the tir e.	me							BC	RING	NO.:	LB-1

E							E	BORIN	G	LOG	BORING	G NO.:	LB-2 1 of 2
		CLIE	NT: N	/lof	fatt & N	lichol					PROJE	CT NO.	21-1242
		PRO.	JECT:	<u></u>	ears Is	land Offs	shore Wi	nd Terminal			DATE S	TART:	8/18/2022
S.W.C	COLE			: _	Sears I	sland, Se	earsport,	Maine			DATE F		8/18/2022
Drilli LOCA DRILL	ng Info ⊓ON: _ ING CO.:	s. W.	on 5.1205, Cole Ex	E. 8 xplo	882762.8 prations,	3458 E	ELEVATIO DRILLER:	DN (FT): _ 26. Jeff Lee	5' +/-	TOTAL DEPTH (FT): 42.0 L DRILLING METHOD: Cased Boring	OGGED BY	(: John C	ozens
RIG T	/PE: _Tr	ack Mou	nted CN	۸E 8	850		AUGER ID	/OD: N/A/N	I/A	SAMPLER: Standard Split-Spoon			
HAMM	ER TYPE	E: Auto	matic			ŀ	AMMER	WEIGHT (lbs)	14	0 CASING ID/OD: 4 in / 4 1/2 in C	ORE BARF	REL: <u>N/A</u>	
	ER COR R I FVFI		N FACI S (ff)·	IOR S	c: <u>0.85</u>	z ł rated belov	HAMMER № 15' V7 2	DROP (Inch): 8 ft 8/26/2022	<u>30</u>	0 am ▼ 1.5 ft 11/08/2022 12:00 am			
GENE	RAL NOT	ES:	- ().		one cata			.0 11 0/20/2022					
KEY TO AND S	O NOTES YMBOLS:	<u>Water I</u> ∑ At tir ▼ At C ▼ After	<u>Level</u> me of Dri ompletion r Drilling	illing n of	Drilling	D = Split S U = Thin W R = Rock 0 V = Field V	poon Samp Valled Tube Core Sampl /ane Shear	e Pen. = Sample Rec. = e bpf = mpf =	= Pene = Rece Blows Minut	etration Length WOR = Weight of Rods $S_v = Fie$ overy Length WOH = Weight of Hammer $q_{ij} = Ur$ per Foot RQD = Rock Quality Designation Ø = Fri e per Foot PID = Photoionization Detector N/A = N	eld Vane She iconfined Co ction Angle (E lot Applicable	ar Strength, mpressive St Estimated) e	kips/sq.ft. rrength, kips/sq.ft.
					SAMPI	LE INFO	RMATIO	N	bc			We	ell Diagram
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification	H ₂ 0 Deptl	ו	
-			1D	М	0-2	24/6	2-7-7-			0.1 Topsoil			
25 — - -				Δ			15			Stiff, brown, sandy silty CLAY, some grav	rel ⊻ ⊻		
20 -			2D	X	5-7	24/22	5-9-14- 15	ID 14230A w =11.7 % W _L =23 W _P =12					Backfill
- - 15 -	- - - - -		3D	X	10-12	24/24	15-42- 22-16						
- - 10 -	- - 15 -		4D	X	15-17	24/12	6-6-14- 9	ID 14231A w =11.4 %		15.0 Stiff to very stiff, gray, SILT and SAND, some fine gravel, trace clay (GLACIAL TILL)			Bentonite plug Well Sand
- - 5	- 20		5D	X	20-22	24/21	4-7-9- 13						Screen
0	- 25		6D	X	25-27	24/11	21-18- 17-30						r
-5 -	- 30 - 30		7D	X	30-32	24/24	7-8-11- 15						
-10 -10	- 35		8D	X	35-36	12/4	15-50			35.0 Hard, gray, silty GRAVEL, some sand, some clay (GLACIAL TILL)			
Stratifica	ation lines i ry between	represent soil types	approxim , transitio	nate ons n	nay be					(Continued Next Page)			
gradual. at times	Water lev and under	el reading	s have be s stated.	een	made								
Fluctuat other fa	ions of gro ctors than t	undwater those pres	may occu ent at the	ur du e tim	ue to ne						BOPING		1 R_2
measure	ements we	re made.				1					BORING	S NO.:	LD-2

							E	ORIN	GΙ	LOG	BC		NO.: _	LB-2
ľ E		CLI	ENT: M	offa	att & Ni	chol					PR	OJEC	T NO.	21-1242
		PRO	JECT:	Se	ars Isla	and Offs	hore Wi	nd Terminal			DA	TE ST	ART:	8/18/2022
S.W	COLE	LOC	CATION:	S	ears Is	land, Se	earsport,	Maine			DA	TE FI	NISH: _	8/18/2022
				S	SAMPL	E INFOR	RMATIO	N	b				W	ell Diagram
Elev (ft)	. Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification		H₂0 Depth		
-15	-		9D	χ.	40-42	24/15	17-49- 35-44			Hard, gray, gravelly sandy SILT, some cla (GLACIAL TILL)	у			
			I K						V/ / /	Bottom of Exploration at 42.0 feet				
Stratif gradu at time	ication lines lary between al. Water less and under	represe s soil type lel readii	nt approxima es, transition gs have bee ons stated.	ate ns ma	ay be nade									
other meas	factors than urements we	those pr re made	esent at the	time	•						BC	RING	NO.:	LB-2

BORING / WELL 10-12-2022 21-1242.GPJ SWCE TEMPLATE.GDT 1/10/23

SWCOLE	CLIENT: <u>Moffatt & N</u> PROJECT: <u>Sears Is</u> LOCATION: <u>Sears I</u>	BORIN Jichol Jand Offshore Wind Termina sland, Searsport, Maine	G LOG	BORING NO.: LB-3 SHEET: 1 of 2 PROJECT NO. 21-1242 DATE START: 8/19/2022 DATE FINISH: 8/19/2022
Drilling Info LOCATION: <u>N</u> DRILLING CO.: RIG TYPE: <u>TI</u> HAMMER TYPI HAMMER COR WATER LEVEL GENERAL NOT	rmation I. 284292.3317, E. 882964.3 S. W. Cole Explorations, ack Mounted CME 850 E: Automatic RECTION FACTOR: 0.85 DEPTHS (ft): Soils satu ES:	3579 ELEVATION (FT):3 LLC DRILLER:	TOTAL DEPTH (FT): 40.4 L DRILLING METHOD: Cased Boring N/A SAMPLER: Standard Split-Spoon): 140 CASING ID/OD: 4 in / 4 1/2 in C	OGGED BY: John Cozens
KEY TO NOTES AND SYMBOLS:	Water Level	D = Split Spoon Sample Pen U = Thin Walled Tube Sample Rec R = Rock Core Sample bpf V = Field Vane Shear mpf	$\begin{array}{llllllllllllllllllllllllllllllllllll$	eld Vane Shear Strength, kips/sq.ft. confined Compressive Strength, kips/sq.ft. ction Angle (Estimated) Not Applicable
Elev. Depth (ft) (ft)	Casing Pen. (bpf) Sample g No.	LE INFORMATION Pen./ Blow Count Field / Lat or Test Data	Sample Description & Classification	H ₂ 0 Depth Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1D 0-2 2D 5-7 3D 10-12 4D 15-17 5D 20-22 6D 25-27 7D 30-32 8D 35-36.8	24/10 1-2-6-8 24/24 4-4-6-7 ID 14232A 24/20 2-4-5-7 24/10 3-6-6-8 ID 14233A 24/10 3-6-6-8 ID 14233A 24/12 18-9- 13-12 ID 14494A $W = 8.9 \%$ $W_L = 21$ $W_P = 14$ 24/17 37-9- 14-27 24/18 17-26- 28-35 28-29- 44- 40/4"	0.3 Topsoil Medium stiff, gray, SILT, some sand 5.0 Stiff, gray, SILT and SAND, trace fine gravel, trace clay 10.0 Stiff, brown, SILT and SAND, trace clay, trace fine gravel, with occasional sand seams 15.0 Stiff, gray, SILT and SAND, some gravel, trace clay (GLACIAL TILL) becomes very stiff becomes hard 35.0 Very dense, gray, sandy GRAVEL, some silt, trace clay, weathered black slate rock sample (GLACIAL TILL)	Sample 14494A composite of 5D, 6D & 7D
boundary between gradual. Water lev at times and under Fluctuations of gro other factors than measurements we	soil types, transitions may be el readings have been made conditions stated. undwater may occur due to hose present at the time re made.		(Continuou Ivent I age)	BORING NO.: LB-3

							E	ORIN	GI	LOG	BO		0.: _	LB-3
1		CLI	ENT: N	Voff	att & Ni	chol					PR		NO.	21-1242
		PRO	DJECT:	Se	ears Isla	and Offs	shore Wi	nd Terminal			DA	TE STA	RT:	8/19/2022
S.W	COLE	LOC	CATION	: 5	Sears Is	land, Se	earsport,	Maine			DA	TE FINIS	SH:	8/19/2022
				;	SAMPL	E INFO	RMATIO	N	ō					
Elev (ft)	v. Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification		H₂0 Depth		Remarks
			1 9D	ب كر	40-40.4	5/3	Ļ 50/5"		KXX/	Bottom of Exploration at 40.4 feet				
2022 21-1242.GPJ SWCE TEMPLATE.GDT 1/10/23														
Stratif bound gradu at tim Fluctu other	fication lines dary between val. Water lev es and under uations of gro factors than urements wo	represer soil type el readir conditio undwate those pr	nt approxim es, transition ngs have bo ons stated. er may occu	nate ons m een r ur du e tim	nay be made le to e						во	RING N	0.:	LB-3

F							В	BORIN	G	LOG			G NO.: _	LB-4
		CLI	ENT: N	Лof	fatt & N	lichol						PROJE	CT NO.	21-1242
		PRO	DJECT:	S	ears Is	land Offs	shore Wi	nd Terminal				DATE S	TART:	8/22/2022
S.W.C	COLE	LOO	CATION	: _	Sears I	sland, Se	earsport,	Maine				DATE F	INISH:	8/22/2022
Drilli		rmat	ion 84 0217	E .	007620	1012		N (ET): 27	0' 1/				(1 Dotrio	k Otto
DRILL		S. V	V. Cole E:		orations,		DRILLER:	Jeff Lee	0 +/-		DRILLING METHOD: Cased Boring	JOGED B	. <u>Faulo</u>	
RIG T	PE: Tr	ack Mo	ounted CN	ME	850		AUGER ID	OD: N/A / N	I/A		SAMPLER: Standard Split-Spoon			
HAMM	ER TYPE	E: Au	tomatic			ŀ	HAMMER	WEIGHT (Ibs)	14	0	CASING ID/OD: _4 in / 4 1/2 in CO	ORE BARF	REL: <u>N//</u>	۹
					R: <u>0.85</u>	<u>2</u> ł	IAMMER	DROP (inch):	30					
GENE	RAL NOT	ES:	пэ (п).			louuceu ai		ganning						
KEY T AND S	O NOTES YMBOLS:	<u>Wate</u> ∑ At ∑ At	e <u>r Level</u> time of Dri Completio	illing n of	Drilling	D = Split S U = Thin V R = Rock (poon Samp /alled Tube Core Sampl	e Pen. Sample Rec. e bpf =	= Pene = Reco Blows	etration Length overy Length per Foot	WOR = Weight of Rods S_v = Fiel WOH = Weight of Hammer q_{ij} = Uno RQD = Rock Quality Designation \emptyset = Fric DID = Distribution \emptyset = Fric	d Vane She confined Cor tion Angle (E	ar Strength npressive S Estimated)	, kips/sq.ft. Strength, kips/sq.ft.
		¥ AI			SAMP		RMATIO	N			PID = Photoionization Detector N/A = N		,	
Flev	Denth	Casing					Blow		- Č		Sample	H ₂ 0		
(ft)	(ft)	Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Count or RQD	Field / Lab Test Data	Graphi		Description & Classification	Dept	ו	Remarks
-	-		1D	M	0-2	24/18	1-2-5-9			0.2 Fore	st duff			
- ·				А						1.8 _ grav	el with roots	/		
25 -	_									Stiff,	brown, SILT and SAND, some grave			
	- 5		0.0					10 4400 44						
· ·	-		20	М	5-7	24/16	4-5-4-5	w =11.7 %						
-	-			А					K					
20 -	-									18.5 Voru	stiff to bard arow SILT and SAND			
-	- 10									som	e gravel, some clay (GLACIAL TILL)			
-	-		3D	М	10-12	24/18	5-6-8-	ID 14495A w =9.2 %	K				Samp	le 14495A osite of 3D_4D
-	-			А				W _L =22 W _P =9					& 5D	
15 -	-													
	15													
	- 13		4D	M	15-17	24/18	11-18- 24-21							
-	-			А										
10 -	-													
-	20		5D	\square	20-22	24/20	7-15-							
-	-			Д					Ø					
5 -	-													
-	-								K					
C7 10 -	- 25		6D	\square	25-27	24/23	8-11-							
-	-			Д			10-10		<i>H</i>					
0 -	-													
5	}													
	30													
-	[7D	\mathbb{N}	31-33	24/20	8-12- 15-20		Ĭ.					
-5 -				Д					1					
	+													
	- 35		8D		35-37	24/20	6-10-		Ø					
				Ň			14-19						1	
-10 -									K					
	-													
Stratifica bounda	ation lines i ry between Water lev	eprese soil typ	nt approxim es, transitio	nate ons r	may be made						(Continued Next Page)			
at times Fluctuat	and under	conditio	ons stated. er may occi	ur dı	ue to									
other fa measur	ctors than ements we	hose pr re made	esent at the	e tin	ne							BORING	S NO.:	LB-4

E							E	ORIN	GI	LOG	BO SH	ring Eet [.]	NO.:	LB-4
		CLI	ENT: N	Nof	fatt & Ni	ichol					PR	OJEC.	T NO.	21-1242
		PRO	DJECT:	S	ears Isla	and Offs	shore Wi	nd Terminal			DA	TE ST	ART:	8/22/2022
S.W.	COLE	LOC	CATION	:_	Sears Is	land, Se	earsport,	Maine			DA	TE FIN	NISH:	8/22/2022
					SAMPL	E INFO	RMATIC	N	Log	Sampla				
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic I	Description & Classification		H ₂ 0 Depth		Remarks
	-		9D	M	40-42	24/12	10-12- 23-29							
										Bottom of Exploration at 42.0 feet				
11/23														
≥ 5														
L M L														
20 2														
242.0														
12-202														
Stratific	cation lines	represer	nt approxin	nate	navho									
gradua at times	I. Water lev and under	el readir conditio	ngs have b ns stated.	ieen	made									
Fluctuation other failed in the second se	ations of gro actors than rements we	undwate those pr re made	er may occ esent at th	ur du ie tim	ue to ne						во	RING	NO.:	LB-4

Ш Ł ć č ç

						E	ORIN	G	LOG		BC		NO.: <u>L</u>	B-5
		CLIENT:	Mof	fatt & N	lichol							ROJEC	T NO. 21	-1242
		PROJECT	: S	Sears Is	land Offs	shore Wi	nd Terminal					TE ST	ART: 8/1	7/2022
S.W.C	COLE	LOCATION	N: _	Sears I	sland, Se	earsport,	Maine					TE FIN	NISH: 8/1	7/2022
Drillin LOCAT	ng Info rion: _N	rmation 1. 283936.4673	6, E. 5	882286.	3986 I	ELEVATIO	DN (FT): _ 29.	1' +/-		TOTAL DEPTH (FT):42.0	LOGG	ED BY:	Patrick Otto	
DRILL	NG CO.:	S. W. Cole E	Explo	orations,	LLC	ORILLER:	Jeff Lee			DRILLING METHOD: Cased Borin	g			
RIG T	(PE: _Tr	ack Mounted C	ME	850	/	AUGER ID	/OD: <u>N/A / M</u>	I∕A		SAMPLER: Standard Split-Spoon				
НАММ		E: Automatic	TOP	n . 0.05	ł		WEIGHT (lbs)	: <u>14</u>	0	CASING ID/OD: _4 in / 4 1/2 in	CORE	BARRE	L: <u>N/A</u>	
	ER CUR R I FVFI	DEPTHS (ff)	יוטרי, ע	K: <u>0.00</u> Vater int	<u>∠</u> r roduced at	10' durine	n drilling	30						
GENER	RAL NOT	ES:	<u> </u>	vator int		To during	ganning							
KEY TO AND S	O NOTES YMBOLS:	Water Level	rilling on of) Drilling	D = Split S U = Thin V R = Rock 0 V = Field \	poon Samp Valled Tube Core Sampl /ane Shear	e Pen. Sample Rec. e bpf = mpf =	= Pene = Reco Blows Minut	etration Length overy Length per Foot e per Foot		ield Va Inconfir riction A Not Ap	ne Shear ned Comp Angle (Est oplicable	Strength, kips/so pressive Strength timated)	q.ft. ı, kips/sq.ft.
				SAMP	LE INFO	RMATIO	N							
Flov	Denth	Casing				Blow		Ľ –		Sample		H.0		
(ft)	(ft)	Pen. (bpf) Sampl No.	a Type	Depth (ft)	Pen./ Rec. (in)	Count or RQD	Field / Lab Test Data	Graphic		Description & Classification		Depth	Rema	ırks
		1D	Μ	0-2	24/12	4-5-7-9		×	0.3 \ Fore	est duff				
			Д						Mec with	ium dense, brown silty gravelly SAN	ID			
	-								2.5 Very	stiff to hard, gray, SILT and SAND				
25 —	-								som	e gravel (GLACIAL TILL)				
-	- 5	2D	М	5-7	24/20	8-11-	ID 14235A							
	-		М			13-15	w =11.7 %							
-			Π					1						
20 -								Ŵ						
- 20	- 10	20	Н	10 12	24/20	6 19								
-	-	30	X	10-12	24/20	31-10								
-	-		А											
	-							Ø						
15 —														
-	- 15	4D	Μ	15-17	24/0	6-5-9-		<i>H</i>						
			М					W						
_	-													
10 -	-													
-	- 20	5D	H	20-22	24/20	6-11-								
-	-		Х			13-19								
			H											
	[Ű.						
	- 25		Ц	05 07	04/00	10.04		10						
10 -			M	20-27	24/20	25-27								
- 1	-		А											
- 16	╞╴┃													
0 -	F							Ø						
-	- 30	7D	\square	30-32	24/24	10-15-								
 -	[Д			10-22		Ű						
-5 -														
-	- 35	8D	H	35-37	24/24	9-11-								
-	╞╴┃		X			16-22								
-	╞╴┃		H					Ø.						
	ţ													
Stratifica	ation lines r	epresent approvi	mate					ŸH.	}	(Continued Next Dags)				
boundar gradual.	y between Water lev	soil types, transit	ions i been	may be made						(Conunued Next Page)				
at times Fluctuat	and under ions of gro	conditions stated	l. cur di	ue to										
other fac	ctors than t	hose present at t	he tin	ne							BC	RING	NO.: L	B-5
I measure		e made.			1									-

							В	ORIN	G	LOG	BO		NO.:	LB-5
1		СП		Mof	fatt & Ni	ichol								2 01 2
		PR	DJECT:	S	ears Isla	and Offs	hore Wi	nd Terminal				TE ST	ART:	8/17/2022
SV	VCOLE	LOC	CATION	: _:	Sears Is	land, Se	earsport,	Maine			DA	TE FIN	NISH:	8/17/2022
0.1					SAMPI		RMATIO	N						
Ele (ft)	v. Depth) (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log	Sample Description & Classification		H ₂ 0 Depth		Remarks
	+		9D	X	40-42	24/24	9-11- 16-30							
									<u> </u>	Bottom of Exploration at 42.0 feet				
/ WELL 10-12-2022 21-1242.GPJ SWCE TEMPLATE.GDT 1/10/23 유명 정 역 중 협력 협력	ification lines ifidary betweer ual. Water lev	represer n soil type rel readii	nt approxim gs have b	nate bien	may be made									
Fluct other meas	uations of gro r factors than surements we	oundwate those pr ere made	er may occ esent at th e.	ur dı e tin	ue to ne						во	RING	NO.:	LB-5

/ WELL 10-12-2022 21-1242.GPJ SWCE TEMPLATE.GDT 1/10/23

Territorial Continue	SW		CLI PRO	ENT: <u>N</u> DJECT: CATION	/lof S	ffatt & N Sears Is Sears Is	lichol land Offs sland, Se	B shore Wi earsport,	nd Terminal Maine	G	LOG	BORI SHEE PRO. DATE DATE	NG NO.: ET: JECT NO E START: E FINISH:	LB-6 1 of 2 21-1242 8/16/2022 8/16/2022
HEY DYNEGS: Value: Ladii D - Sections Surger, House, Ling No. 1 - Value of House, Sections Sectins Sections Sections Sectins Sections Sections Secti	Drilli LOCA DRILL RIG T HAMM HAMM WATE GENF	ING CO.: ING CO.: YPE: _Tr IER TYPE IER COR R LEVEL RAL NOT	I 	ion 366.8123, V. Cole E: bunted Ch tomatic ON FACT THS (ft):	E. xplc ME	882901.7 prations, 850 R: <u>0.85</u> Vater intr	1805 [LLC] / 2 roduced at	ELEVATIC DRILLER: AUGER ID HAMMER HAMMER	DN (FT):36. 36f Lee D/OD:/A / N WEIGHT (Ibs) DROP (inch): g drilling ♀ 1.8	5' +/- V/A : _14 _30 ft 8/2	TOTAL DEPTH (FT): 41.7 L0 DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 CASING ID/OD: 4 in / 4 1/2 in C 26/2022 12:00 am ¥ 0 ft 11/08/2022 12:00 am 11/08/2022 12:00 am	DGGED	BY: <u>Pat</u>	rick Otto
Eler. Open (h) Open (h) Open (h) <t< td=""><td>KEY T AND S</td><td>O NOTES YMBOLS:</td><td><u>Wate</u> ∑ At ∑ At ∑ At</td><td>e<u>r Level</u> time of Dri Completio ter Drilling</td><td>illing n of</td><td>) f Drilling</td><td>D = Split S U = Thin V R = Rock 0 V = Field \</td><td>Spoon Samp Valled Tube Core Sampl /ane Shear</td><td>e Pen. : Sample Rec. : e bpf = mpf =</td><td>= Pene = Reco Blows Minut</td><td>$\begin{array}{lll} \mbox{tration Length} & \mbox{WOR} = \mbox{Weight of Rods} & \mbox{S}_v = \mbox{Fie} \\ \mbox{wory Length} & \mbox{WOH} = \mbox{Weight of Hammer} & \mbox{q}_U = \mbox{Un} \\ \mbox{per Foot} & \mbox{RQD} = \mbox{Rock Quality Designation} & \mbox{\$\emptyset\$ = \mbox{Fric} \\ \mbox{ep re Foot} & \mbox{PID} = \mbox{Photoionization Detector} & \mbox{N/A} = \mbox{N} \\ \end{array}$</td><td>d Vane S confined tion Angl ot Applica</td><td>Shear Streng Compressiv e (Estimated able</td><td>gth, kips/sq.ft. e Strength, kips/sq.ft. d)</td></t<>	KEY T AND S	O NOTES YMBOLS:	<u>Wate</u> ∑ At ∑ At ∑ At	e <u>r Level</u> time of Dri Completio ter Drilling	illing n of) f Drilling	D = Split S U = Thin V R = Rock 0 V = Field \	Spoon Samp Valled Tube Core Sampl /ane Shear	e Pen. : Sample Rec. : e bpf = mpf =	= Pene = Reco Blows Minut	$ \begin{array}{lll} \mbox{tration Length} & \mbox{WOR} = \mbox{Weight of Rods} & \mbox{S}_v = \mbox{Fie} \\ \mbox{wory Length} & \mbox{WOH} = \mbox{Weight of Hammer} & \mbox{q}_U = \mbox{Un} \\ \mbox{per Foot} & \mbox{RQD} = \mbox{Rock Quality Designation} & \mbox{\emptyset = \mbox{Fric} \\ \mbox{ep re Foot} & \mbox{PID} = \mbox{Photoionization Detector} & \mbox{N/A} = \mbox{N} \\ \end{array} $	d Vane S confined tion Angl ot Applica	Shear Streng Compressiv e (Estimated able	gth, kips/sq.ft. e Strength, kips/sq.ft. d)
Effer. Depth (10) No. E Depth (11) Rev. (11) Blow (11) Field / Lab B Description & (11) How (11) Boot (11) A Description & (11) How (11) B Description & (11) How (11) <					-	SAMPI	E INFO	RMATIO	N	bo-	Querral			Well Diagram
36 10 0.2 24/16 45.77 10 13 Creat duff 30 - <td>Elev. (ft)</td> <td>Depth (ft)</td> <td>Casing Pen. (bpf)</td> <td>Sample No.</td> <td>Type</td> <td>Depth (ft)</td> <td>Pen./ Rec. (in)</td> <td>Blow Count or RQD</td> <td>Field / Lab Test Data</td> <td>Graphic L</td> <td>Sample Description & Classification</td> <td>H De</td> <td>H₂0 epth 7</td> <td></td>	Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	H De	H₂0 epth 7	
Stratification lines represent approximate (Continued Next Page) boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. BORING NO.: LB-6				1D 2D 3D 4D 5D 6D 7D 8D		0-2 4.5-6.5 10-12 15-17 20-22 25-27 30-32 30-32 35-37	24/16 24/20 24/18 24/16 24/15 24/22 24/22 24/22	4-5-7-7 6-7-7-7 11-8- 10-12 10-9- 10-13 9-12- 17-14 5-9-9- 15 6-7-8- 11 5-7-8- 12	ID 14236A w =13.7 % ID 14237A w =11.4 % ID 14496A w =10.4 % W _L =22 W _p =14		 0.3 Forest duff Medium dense, gray-brown silty SAND, trace gravel with rootlets Stiff, brown sandy SILT, trace clay 3.5 Stiff, brown, SILT and SAND, some grave (GLACIAL TILL) 9.0 Very stiff, olive, SILT and SAND, some gravel, some clay (GLACIAL TILL) 13.0 Very stiff, gray, SILT and SAND, trace to some gravel, some clay (GLACIAL TILL) 			 Spoils and gravel backfill Bentonite seal Filter sand Slotted screen
at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. BORING NO.:	Stratifica bounda gradual	ation lines i ry between . Water lev	represe soil typ el readi	nt approxim es, transition ngs have b	nate ons i een	may be made					(Continued Next Page)	1	<u> </u>	
	at times Fluctuat other fa measur	and under tions of gro ctors than ements we	condition undwate those provide the second s	er may occi resent at th	ur d e tin	ue to ne						BORI	NG NO.:	LB-6

ſ	F							В	ORIN	GΙ	LOG	BO SH		NO.: _	LB-6
			CU		Moff	fatt & Ni	chol					PR			21-1242
			PR		S.	ears Isla	and Offs	hore Wi	nd Terminal				TF ST		8/16/2022
	CIVIC		100			Sears Is	land Se	earsport	Maine						8/16/2022
ļ	5.W.C	JOLE			<u> </u>		iana, ee	Jaroport,	Manio			<u> </u>			
						SAMPL	E INFO	RMATIO	N	p				vv	eli Diagram
	Flev	Denth	Casing					Blow		72	Sample		H ₂ 0		
	(ft)	(ft)	Pen. (bpf)	Sample	e e	Depth	Pen./	Count	Field / Lab	h	Description &		Depth		
			()	No.	F	(ft)	(in)	or	Test Data	Gra	Classification				
ļ						40 41 7	20/11	RQD		X X 7 F					1
	-	-		90	X	40-41.7	20/11	14-20-		1	occasional cobbles below 40'				
ŀ	-5							50/2" ſ		K/Y4	Bottom of Exploration at 41.7 feet			• • • • • •	
											Bollon of Exploration at 41.7 leet				
e															
10/2															
4															
^{DT}															
щ															
F															
ΜΜ															
비															
VCE															
ŝ															
GPJ															
42.(
-12															
21															
2022															
12-2															
10-															
j۲	Stratifica	ation lines i	epreser	nt approxim	nate	noviha									
ME	gradual.	Water lev	son type el readir	es, transitions have b	een	made									
5	at times	and under	conditio	ons stated.	ur de	le to									
N	other fac	ctors than t	hose pr	esent at the	ie tim	ie io						BO		NO ·	
Ы	measure	ements we	re made									- 00	UNG	NO	LD-0

		CLIE PRO.		/lof S	fatt & N ears Isl	ichol and Offs	B shore Wi	Normal Naine	G	LOG	BORIN SHEET PROJE DATE S	G NO.: LB-7 : 1 of 2 CT NO. 21-1242 START: 8/23/2022 NISH: 8/23/2022
Drilli LOCA DRILL RIG TY HAMM HAMM WATE GENE	ING CO.: ING CO.: YPE: _T IER TYPE IER COR R LEVEL RAL NOI	I 28370 I 28370 I S. W. I S. W. I Auto I Auto RECTIO DEPTH IES: Image: State St	<u>50</u> 6.2995, Cole Example Inted CM omatic IN FACT IS (ft):		882080.0 prations, 1 850 R:0.852 Vater intr)995 E LLC [/ 2 oduced at	ELEVATIC DRILLER: AUGER ID HAMMER HAMMER 10' during	DN (FT): 	8' +/- I/A : <u>14</u> <u>30</u> ft 8/2	TOTAL DEPTH (FT): 42.0 L0 DRILLING METHOD: Cased Boring SAMPLER: Standard Split-Spoon 0 CASING ID/OD: 4 in / 4 1/2 in Co 26/2022 12:00 am ¥ 3.2 ft 11/08/2022 12:00 am X X	DGGED B	Y: Patrick Otto REL: N/A
KEY T AND S	O NOTES YMBOLS:	Water ⊈ At tii ⊈ At C ⊈ Afte	Level me of Dri Completion r Drilling	illing n of	Drilling	D = Split S U = Thin W R = Rock 0 V = Field V	poon Samp Valled Tube Core Sampl /ane Shear	e Pen. = Sample Rec. = e bpf = mpf =	= Pene = Reco Blows Minut	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ld Vane She confined Co tion Angle (ot Applicabl	ear Strength, kips/sq.ft. mpressive Strength, kips/sq.ft. Estimated) e
					SAMPL	E INFO	RMATIO	N	бc			Well Diagram
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification	H₂0 Dept	h
- - - 20 -	5		1D 2D	X	0-2	24/1 24/16	1-8-10- 10 4-1-3-	ID 14238A w =21.9 %		Medium dense to loose, brown, gravelly SAND. some silt (FILL)	¥	
- - - - - - - -			3D	X	10-12	24/18	10 3-5-5-7	ID 14239A w =13.5 %		6.5Medium dense, gray SAND and SILT, sor 7.0gravel (FILL) Stiff, gray, sandy SILT, some gravel, some clay (GLACIAL TILL)	ne v Y	Spoils and gravel backfill
- 10 - - - -	- - - - - -		4D	X	15-17	24/1	7-15- 17-21			^{15.0} Very stiff to hard, gray SILT and SAND, some gravel, with cobbles (GLACIAL TILL	-)	 Bentonite seal Filter sand
5	- - - - - -		5D	X	20-22	24/12	12-18- 25-35					Slotted screen
	25 		6D	X	25-26.8	21/13	11-14- 19- 50/3"					
	- 30 		7D	X	30-32	24/24	12-20- 26-35					Gravel
-15 -	- 35 - - -		8D	X	35-35.3	3/2	50/3"					
Stratifica boundar gradual at times	ation lines i ry between . Water lev and under	represent soil types el reading condition	approxim s, transitio is have be is stated.	nate ons r een	may be made		1	1	<u>///</u> *	(Continued Next Page)	I	
other fa	uons of gro ctors than t ements we	undwater those pres re made.	may occu sent at the	ur dı e tim	ue to 1e						BORIN	G NO.: LB-7

							E	BORIN	GI	LOG	BO	RING	NO.: _	LB-7
		СШ		Mof	fatt & N	ichol					5H PR			2 01 2
		PRO		S	ears Isl	and Offs	shore Wi	nd Terminal			DA	TE ST	ART:	8/23/2022
SW	COLE	LOC	CATION	: 3	Sears Is	land, Se	earsport,	Maine			DA	TE FI	NISH:	8/23/2022
5.00	COLL			_									W	ell Diagram
Elev (ft)	. Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	E INFO Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log	Sample Description & Classification		H₂0 Depth		
	-		9D	M	40-42	24/18	14-16- 20-44							
									<u>X///</u>	Bottom of Exploration at 42.0 feet				Å
	cation lines			nate										
gradua gradua at time Fluctua other f	al. Water leves al. Water leves and unde ations of gro actors than	r condition oundwate those pr	ngs have b ons stated. er may occi esent at th	ur dı e tim	made ue to						DC	DING	NO .	

measurements were made.

F					E	BORIN	G	LOG	BORING	NO.: LB-8
		CLIENT: N	Voffatt & I	Nichol					PROJEC	T NO. 21-1242
		PROJECT:	Sears Is	land Offs	shore Wi	nd Terminal			DATE ST	ART: <u>8/16</u> /2022
S.W.O	COLE	LOCATION	: Sears	sland, Se	earsport,	Maine			DATE FI	NISH: 8/16/2022
Drilli LOCA DRILL	ng Info TION: <u> </u>	rmation I. 283668.9613, S. W. Cole E	E. 882898. xplorations,	5125 LLC	ELEVATIO DRILLER:	DN (FT): 39 Jeff Lee	8' +/-	TOTAL DEPTH (FT): 42.0 LC DRILLING METHOD: Cased Boring	GGED BY:	Patrick Otto
RIG T	YPE: Tr	ack Mounted Cl	ME 850		AUGER ID	0/OD: N/A / I	N/A	SAMPLER: Standard Split-Spoon		
HAMM		E: Automatic		I	HAMMER	WEIGHT (lbs)	: <u>14</u>	0 CASING ID/OD: 4 in / 4 1/2 in CO	ORE BARRE	EL: <u>N/A</u>
WATE	R LEVEL	DEPTHS (ft):	Water int	roduced at	10' durinc	DROP (Incn): a drillina	30			
GENE	RAL NOT	ES:				,				
KEY T AND S	O NOTES YMBOLS:	Water Level ↓ At time of Dr ↓ At Completio ↓ After Drilling	illing on of Drilling	D = Split S U = Thin V R = Rock V = Field V	Spoon Samp Valled Tube Core Sampl /ane Shear	ole Pen. Sample Rec. le bpf = mpf =	= Pene = Reco Blows • Minut	work WOR = Weight of Rods S_v = Fiel overy Length WOH = Weight of Hammer q_u = Unc per Foot RQD = Rock Quality Designation Ø = Fric e per Foot PID = Photoionization Detector N/A = Nr	d Vane Shear confined Com tion Angle (Es ot Applicable	r Strength, kips/sq.ft. pressive Strength, kips/sq.ft. timated)
			SAMP	LE INFO	RMATIO	N	b			
Elev. (ft)	Depth (ft)	Casing Pen. (bpf) Sample No.	e ed Depth ⊢ (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo	Sample Description & Classification	H ₂ 0 Depth	Remarks
-		1D	0-2	24/9	2-6-7-			0.3 Forest duff		
	- - - -				10			Medium dense, rust brown-gray silty 1.7 gravelly SAND with organics Medium dense, brown, SAND and SILT, some gravel (GLACIAL TILL)	/	
		2D	5-7	24/18	6-9-14- 8	ID 14240A w =11.2 %		8.5 Stiff brown sandy SILT some clay some		
30	- 10 	3D	10-12	24/16	3-2-8-5			gravel with cobbles (GLACIAL TILL)		
25 -	- - 15 - -	4D	15-17	24/16	4-5-6-9					
20 -	20 2	5D	20-22	24/2	11-11- 10-14	ID 14241A w =8.7 %		GRAVEL, with cobbles (GLACIAL TILL)		
- 15 -	25 	6D	25-27	24/4	11-20- 20-30			Very stiff to hard, gray, sandy gravelly SIL with cobbles (GLACIAL TILL)	Г,	
10 -	30 	7D	30-32	24/16	8-11- 13-30					
	35 	8D	35-37	24/21	10-8- 10-19					
Stratifica	ation lines r	epresent approxin	nate		1	1	V A	(Continued Next Page)		1
gradual.	. Water level and under	el readings have b conditions stated	een made							
Fluctuat other fa	tions of gro ctors than t	undwater may occ hose present at th	ur due to le time						BUDING	
measur	ements we	re made.							BURING	

								E	ORIN	GΙ	LOG	BO		NO.:	LB-8
1			CLI	ENT: N	/lof	fatt & Ni	ichol					PR			2 01 2
		ノ	PRC	JECT:	S	ears Isla	and Offs	shore Wi	nd Terminal			DA	TE ST	ART:	8/16/2022
S	WCO	DI F	LOC	ATION	: 3	Sears Is	land, Se	earsport,	Maine			DA	TE FI	NISH:	8/16/2022
			1			SAMDI			NI						
El (lev. E ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Log	Sample Description & Classification		H₂0 Depth		Remarks
Γ	-			9D	M	40-42	24/17	8-9-16- 23							
								1		4/1/	Bottom of Exploration at 42.0 feet				
G / WELL 10-12-2022 21-1242.GPJ SWCE TEMPLATE.GDT 1/10/23 ! 보응 당 알	ratificatic undary L times an	on lines r between /ater leve ad under	epreser soil type conditic	tt approxim ss. transitio gis have bars stated.	nate ons n	nay be made									
at oth me	ner facto easurem	rs than t ents wer	hose pre e made	esent at the	e tim	ie						BO	RING	NO.:	LB-8

Differ Differ Andre 10 Part ETATR: 21:142 CARTON: Sears Bland: Searsport, Maire DATE ETAR: 22:2022 Dating Information Controls: Sears Bland: Searsport, Maire TOTAL DEPTH (FT): 40.2 22:2022 Dating Information Controls: Sears Bland: Searsport, Maire TOTAL DEPTH (FT): 40.2 20:2022 Dating Information Controls: Sears Bland: Searsport, Maire Maire Information Controls: Sears Bland: Searsport, Maire December (FT): 40:2 Controls: Sears Bland: Searsport, Maire December (FT): 40:2 Controls: Sears Bland: Searsport, Maire December (FT): 40:2 Controls: Controls: <td< th=""><th>F</th><th></th><th></th><th></th><th></th><th></th><th></th><th>E</th><th>BORIN</th><th>G</th><th>LOG</th><th>BORING</th><th>NO.: LB-9</th></td<>	F							E	BORIN	G	LOG	BORING	NO.: LB-9
NUMBER PolaceT: Sears Island Offshore Wind Terminal Date Fram: Brzzeliz Defining Information LOCATOR: Sears Island Offshore Wind Terminal Date Frame: Brzzeliz Br			CLI	ENT: N	Лof	fatt & N	lichol					PROJEC	T NO. 21-1242
STUNCTION Decknow: Sparse biarrof. Seargopert, Maine DATE FINISH: 9/22/2022 DMILING INFORMATION CARTION INFORMATION INFORMATIO			PRO	JECT:	S	ears Is	land Offs	shore Wi	ind Terminal			DATE ST	FART: 8/22/2022
Difficient Information Control No. Description Control No.	S.W.C	COLE	LOC	CATION	:	Sears I	sland, Se	earsport,	Maine			DATE FI	NISH: 8/22/2022
DOCUMENT No.20440 25411, ESS220900 ELEVATION (PT): 2.31 1+/- DTAL DEPTH (T): 2.00 LOAD CDE (N): 0 RG TYPE: The Monthed Conference Content Conference Content Conference Content Conference Content Conference Content Conference Confere	Drilli	na Info	ormati	ion									
DRLLING CO: S.W. Cole Experiations. LLC Desclame Cole MAMER CORE Mamma Control Mamma Control <th< td=""><td>LOCAT</td><td>ΓION: Ν</td><td>N. 2834</td><td>49.8941,</td><td>Е.</td><td>882329.6</td><td>6902 B</td><td>ELEVATIO</td><td>DN (FT): 34.</td><td>1' +/-</td><td>TOTAL DEPTH (FT): 42.0 LC</td><td>GGED BY</td><td>Patrick Otto</td></th<>	LOCAT	ΓION: Ν	N. 2834	49.8941,	Е.	882329.6	6902 B	ELEVATIO	DN (FT): 34.	1' +/-	TOTAL DEPTH (FT): 42.0 LC	GGED BY	Patrick Otto
RIG TYPE: Track Municipal Coll #150 MADER INDO: MAX / NAA SAMPLE I: Same dight-Spoor HAMMER CORRECTION FACTOR: 0.82 HAMMER ROPE (not)::::::::::::::::::::::::::::::::::::	DRILL	ING CO.:	S. V	/. Cole E	xplc	orations,	LLC	DRILLER:	Jeff Lee		DRILLING METHOD: Cased Boring		
HAMMER TYPE: Automatic HAMMER VERUPT (19): 140 CASING LIDO: 4 // 4 (12 m CASING LIDO: 4 // 4 // 4 // 4 // 4 // 4 // 4 // 4	RIG T	/PE: _Tr	ack Mo	ounted Cl	ME	850		AUGER ID	D/OD:N/A / M	√A/	SAMPLER: Standard Split-Spoon		
HAMMER CORRECTION FACTOR: 0.652 HAMMER BOPC (not): 30 CHARTER LIVEL DEPTH 6(1): With interfaced at 10 CM and griling CHARTER LIVEL DEPTH 10 CM and griling at 10 CM and griling	HAMM	ER TYPE	E: Au	tomatic			I	HAMMER	WEIGHT (lbs)	: 14	CASING ID/OD: _4 in / 4 1/2 in _ CO	ORE BARR	EL: <u>N/A</u>
With Except Define (n): Water Level Definition Definition Definition Definition Definition S, = fail vane Sheer Sheery	HAMM	ER COR	RECTI		TOF	R: 0.852	<u> </u>	HAMMER	DROP (inch):	30			
Normalization Description & Company Des			. DEPT	ΗS (π):		vater intr	oduced at	10° during	g arilling				
AND SYNED.3: J. At the of thirding the show does by many shows and the show does by the show does by the shows and the show does by the show	KEY TO	O NOTES	Wate	r Level			D = Split S	Spoon Sam	ole Pen.	= Pene	tration Length WOR = Weight of Rods S _u = Fiel	d Vane Shea	r Strength, kips/sg.ft.
Line control SAMPLE INFORMATION Sample Depth Care Horizont Control Sample Depth Remarks 10 (10)	AND S	YMBOLS:	∑ At Ţ At ▼ At	time of Dri Completio	illing n of) Drilling	U = Thin V R = Rock (V = Field)	Valled Tube Core Sampl	e Sample Rec. le bpf =	= Reco Blows	wery Length WOH = Weight of Hammer q_u = Unc per Foot RQD = Rock Quality Designation Ø = Fric per Foot PID = Photoionization Detector N/A = N	confined Com tion Angle (Es	pressive Strength, kips/sq.f stimated)
Eler, (h) Depth (h) Energie (h) Depth (h) Pent/(h) Blow (h) Field (Lab or or or rest Data) 9 Sample Classification Ho Remarks 30 -5 20 7 24/12 10-10 Medium dense, brown sandy GRAVEL, some gravel, trace day with cobbies and boulders (FIL) Image: classification Ho Image: classification <			- <u>+</u> - / 1			SAMPI		RMATIC)N	0			
(n) (Elev	Depth	Casing		Π			Blow		ĽČ	Sample	H-0	
No. P (U) (m) Rodot Rodot Fest Data 6 Classification 30 - 5 20 - 5.7 24/20 6.13. 0 142/23. 3.5 Very stiff, gray, sandy SILT, some gravel, trace day with cobbies and boulders (FILL) 26 - 10 30 - 10.11.7 20/18 3.5.7. 20 - 15 4D - 15.17 24/20 6.13. 0 142/23. 10 - 10.11.7 20/18 3.5.7. 50/2* 12.0* Very stiff to hard, gray, SILT and SAND, some gravel, trace day (GLACIAL TILL) 10 - 25 6D 25.27 24/22 22.40. 10 142/23. 10 - 25 6D 25.27 24/22 22.40. 10 142/23. 10 - 25 6D 25.27 24/22 22.40. 10 142/23. 0 - 36 8D 35.35.3 3/3 50/3*	(ft)	(ft)	Pen. (bpf)	Sample	ype	Depth	Pen./	Count	Field / Lab	aphi	Description &	Depth	Remarks
30 10 10 10-2 24/12 10-10 Medlum dense, brown sandy GRAVEL, some silt (FIL) 30 5 20 5.7 24/20 6-13. 10-10 3.5 Very stiff (gray, sandy SILT, some gravel, trace clay with oobbles and boulders (FILL) 25 10 30 10-11.7 20/18 3.5.7. 50/2* 20 15 40 15-17 24/0 22-19. 11-18. 10-14225. 10 30 10-11.7 20/18 3.5.7. 50/2* 10-12.5. 20 -15 40 15-17 24/0 22-19. 10-17.25. 10 -25 60 25-27 24/22 22-40. 10-14235. 10 -25 60 25-27 24/22 22-40. 10-14235. 10 -25 60 25-27 24/22 22-40. 10-14235. 10 -36 80 35-35.3 3/3 50/3* -5 -30 70 30-32 24/18				NO.	ſ	(11)	(in)	or RQD	i est Data	ٿ ت			
30 5 2D 5.7 24/20 6-13 ID 14342A 25 10 3D 10-11.7 20/18 3-5.7. 20 15 4D 15-17 24/0 22-19. 15 4D 15-17 24/0 12-19. 12-0 15 4D 15-17 24/0 12-19. 12-0 16 4D 15-17 24/0 12-19. 10-14/243A 16 4D 15-17 24/0 12-19. 12-0 16 4D 15-17 24/0 12-19. 12-0 16 4D 15-17 24/0 12-19. 12-0 16 4D 15-17 24/0 12-19. 10-14/243A 10 -25 6D 25-27 24/18 16-22. 10 -36 8D 35-35.3 3/3 50/3* 0 -36 8D 35-35.3 3/3 50/3* 0 -36 8D 35-35.3 3/3 50/3* 0 -36 8D 35-3				1D	\mathbf{H}	0-2	24/12	10-10-		\boxtimes	Medium dense, brown sandy GRAVEL.		
30 - 5 2D 5.7 24/20 6.13. ID 14/20.1 25 10 3D 10-11.7 20/18 3-5.7 50/2 12.0 Very stiff, gray, sandy SILT, some gravel, trace day with cobbles and boulders (FILL) 20 15 4D 15-17 24/0 22-19 12.0 Very stiff to hard, gray, SILT and SAND, some gravel, trace day (GLAC/AL TILL) 10 - 25 6D 20-22 24/18 11-18. ID 14243A 10 - 25.7 24/22 31-41 10.144070, weight of the second		+			Ŵ			10-10		\bigotimes	some silt (FILL)		
30 - 5 20 5.7 24/20 6-13. 14-16 ID 14242A IA-16 10 14242A W=12.% 25 10 3D 10-11.7 20/18 3-5.7. 50/2* 30 12.0 Very stiff to hard, gray, SILT and SAND, some gravel, trace day (GLACIAL TILL) 20 15 4D 15-17 24/0 27-98 10-14242A IT-25 12.0 Very stiff to hard, gray, SILT and SAND, some gravel, trace day (GLACIAL TILL) 16 20 5D 20-22 24/18 11-18- 29-32 ID 14242A IT-25 ID 14242A Very stiff to hard, gray, SILT and SAND, some gravel, trace day (GLACIAL TILL) 10 25 6D 25-27 24/22 22-40- IT-25 ID 14243A W=9.2 % ID 14497A W=9.5 % 10 33-32 24/18 16-22 IT-33 ID 14497A W=9.5 % ID 14497A W=9.5 % ID 14497A W=9.5 % 10 33 8D 35-35.3 3/3 50/3* ID 14497A W=9.5 % ID 14497A W=9.5 % ID 14497A W=9.5 % 10 34.8 ID 25-27 24/22 22-40- IT-33 ID 14497A W=9.5 % ID 14497A W=9.5 % ID 14497A W=9.5 % 10 35.8 8D 35-35.3 3/3<	-				Π								
25 10 3D 10-11.7 20/18 3-5.7. 20 15 4D 10-11.7 20/18 3-5.7. 50/2* 10 10-11.7 20/18 3-5.7. 50/2* 4D 10-11.7 20/18 3-5.7. 50/2* 4D 11-17 24/0 22-19. 15 4D 11-17 24/0 22-19. 16 20 5D 20-22 24/18 11-18. 1D 14243A 10 25 6D 25-27 24/22 22-40. 1D 1497A 10 25 6D 25-27 24/22 22-40. 1D 1497A 10 40 3-35.3 3/3 50/3* 10-1497A 10 35 8D 35-35.3 3/3 50/3* 10 40 35-35.3 3/3 50/3* 10-1497A 10 40 35-35.3 3/3 50/3* 10-1497A 10.14047A 40 16-22. 27-34 10-1497A 10.14047A 40 10-1497A 10-1497A<	30 -									\bigotimes	^{3.5} Very stiff, gray, sandy SILT, some gravel.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	- 5		20		57	24/20	6 13	ID 14242A		trace clay with cobbles and boulders (FILL	.)	
25 10 30 10-11.7 20/18 3-5-7- 50/2* 20 15 40 15-17 24/0 22-19- 17-25 15 40 15-17 24/0 22-19- 17-25 16 20 50 20-22 24/18 11-18- 17-25 10 25 60 25-27 24/22 22-40- 27-34 10-14/243A W = 92 % 0 35 80 35-35.3 3/3 50/3* 10-14/243A W = 92 % 0 35 80 35-35.3 3/3 50/3* 10-14/243A W = 92 % 0 35 80 35-35.3 3/3 50/3* 10-14/243A W = 92 % 0 35 80 35-35.3 3/3 50/3* 10-14/243A W = 92 % 0 35 80 35-35.3 3/3 50/3* 10-14/243A W = 92 % 0 35 80 35-35.3 3/3 50/3* 10-14/243A W = 92 % 0 5 90 35-35.3 3/3 50/3* 10-14/243A W = 92 % 10-14/243A W = 92 % 0 0 35-35.3 3/	-	-		20	X	5-7	24/20	14-16	w =12 %				
25 10 30 10-11.7 20/18 3-5.7. 20 15 40 15-17 24/0 22-19- 15 20 50 20-22 24/18 11-18- 10 25 60 25-27 24/22 22-40- 10 40 10-14/23 10-14/243A 10-14/243A 10 25 60 25-27 24/22 22-40- 10 14/27A 11-18- 10-14/243A 10-14/243A 0 35 80 35-35.3 3/3 50/3* 0 35 80 35-35.3 3/3 50/3* 0 35 80 35-35.3 3/3 50/3* 0 40 10-17/25 10-14/47A 10-14/47A 0 35 80 35-35.3 3/3 50/3* 0 35 80 35-35.3 3/3 50/3* 0 10-14/47A 10-14/47A 10-14/47A 10-14/47A 0 10-14/47A 10-14/47A 10-14/47A 10-14/47A		-			А								
25 10 3D 10-11.7 20/18 3-5.7. 20 15 4D 15-17 24/0 22-19- 15 20 5D 20-22 24/18 11-18- 10 25 6D 25-27 24/22 22-40- 10 25 6D 25-27 24/22 22-40- 10 40 30-32 24/18 16-22- 10-14/243A 10 25 6D 25-27 24/22 22-40- 10-14/243A 10 40 30-32 24/18 16-22- 10-14/243A 10 36 8D 35-35.3 3/3 50/3* 10 35 8D 35-35.3 3/3 50/3* 10 36 8D 35-35.3 3/3 50/3* 10 14.07.0 15.07.2* 10.1407A 10.1407A 10 36 8D 35-35.3 3/3 50/3* 10 10.1407A 10.1407A 10.1407A 10.1407A 10.1007A 10.1407A 10.1407A	-	-								\otimes			
10 3D 10-11.7 20/18 3-5-7- 50/2* 20 15 4D 15-17 24/0 22-19- 17-25 15 4D 15-17 24/0 22-19- 17-25 16 20 5D 20-22 24/18 11-18- 29-32 ID 14243A W = 9.5 10 25 6D 25-27 24/22 22-40- 31-41 ID 14497A W = 9.5 5 30 7D 30-32 24/18 16-22- 17-34 ID 14497A W = 9.5 5 30 7D 30-32 24/18 16-22- 17-34 ID 14497A W = 9.5 5 30 7D 30-32 24/18 16-22- 17-34 ID 14497A W = 9.5 5 30 7D 30-32 24/18 16-22- 17-34 ID 14497A W = 9.5 5 40 35-35.3 3/3 50/3* ID 14497A 6 5 8D 35-35.3 3/3 50/3* 7 30-35 8D 35-35.3 3/3 50/3* 8 Mondard Mathemachines represent approximate border backenders wat under conditive statiot. ID 14497A	25 -	-											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	- 10		3D	\square	10-11.7	20/18	3-5-7-					
20 15 40 15-17 24/0 22-19- 17-25 15 20 5D 20-22 24/18 11-18- 29-3% 1D 14233A w =9.2% 10 25 6D 25-27 24/22 22-40- 31-41 1D 14233A w =9.2% 5 -30 7D 30-32 24/18 16-22- 27-34 27-34 5 -30 7D 30-32 24/18 16-22- 27-34 1D 5 -30 7D 30-32 24/18 16-22- 27-34 1C 5 -30 7D 30-32 24/18 16-22- 27-34 1C 5 -40 -40 -40 -40 -40 -40 -5 -60 -35 8D =35-35.3 3/3 50/3* 5 -5 -60 -70 -70 -70 -70 -70 -70 -70 -35 8D =35-35.3 3/3 50/3* -70 -70 -70 -70 -70 -70 -70 -70 -70 -70 -70 -70 -70 -70	-	-			Д			50/2"					
20 15 4D 15-17 24/0 22-19- 17-25 Some gravel, trace day (GLACIAL TILL) 15 20 5D 20-22 24/18 11-18- 19-32 ID 14243A 10 25 6D 25-27 24/22 22-40- 31-41 ID 14497A 10 - 25 6D 25-27 24/22 22-40- 31-41 ID 14497A 10 - - - - - - - 5 - 30 7D 30-32 24/18 16-22- 27-34 - 5 - - - - - - - - 5 - - 30-32 24/18 16-22- 27-34 - - - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>-</td> <td>Ľ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12.0 Very stiff to hard, gray, SILT and SAND,</td> <td></td> <td></td>	-	Ľ									12.0 Very stiff to hard, gray, SILT and SAND,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20 -	_									some gravel, trace day (GLACIAL TILL)		
10 10 10 10 10 17.25 15 50 20.22 24/18 11.18- 10 14243A 10 25 6D 25.27 24/22 22.40- 10 14497A 10 25 6D 25.27 24/22 22.40- 10 14497A 10 - 25 6D 25.27 24/22 22.40- 10 14497A 10 - 30 7D 30.32 24/18 16-22- 0	-	- 15		40	\mathbb{H}	15-17	24/0	22-19-					
15 - 20 5D - 20-22 24/18 11-18- 29-32 ID 14243A w = 9,2% 10 - 25 6D - 25-27 24/22 22-40- 31-41 ID 14497A w = 9,2% 10 - 25 7D - 30-32 24/18 16-22- 27-34 - 5 - 30 7D - 30-32 24/18 16-22- 27-34 - - 0 - - - - - - - - 5 - - - - - - - - - 6 - - - - - - - - - - - 7 -	-	-			X	10-17	24/0	17-25					
15 20 5D 20-22 24/18 11-18- ID 14243A 10 25 6D 25-27 24/22 22-40- ID 14497A 10 25 6D 25-27 24/22 22-40- ID 14497A 10 4 7D 30-32 24/18 16-22- 27-34 5 30 7D 30-32 24/18 16-22- 27-34 0 35 8D 35-35.3 3/3 50/3* Image: Stratification lines represent approximate boundary between soil types, transitions may be gardaul. Water Weil readings have been made at times and under conditions stated. (Continued Next Page) Functiones of goundwater may be gardaul. Water may be gardaul. Water may represent may be gardault water may repart may be gardault wateremay may be gardault water	-	-			Н					K			
15 20 5D 20-22 24/18 11-18- 19-32 ID 14243A W = 9.2 % 10 25 6D 25-27 24/22 22-40- 31-41 ID 14243A W = 9.2 % 5 6D 25-27 24/22 22-40- 31-41 ID 14497A W = 9% ID 14497A W = 9% 5 - - - - - - 5 - - - - - - 6 - - - - - - 6 - - 30-32 24/18 16-22- 27-34 - - 5 - - - - - - - - 5 - - - - - - - - 6 - 35-35.3 3/3 50/3* - - - - 5 - - - - - - - - - 6 - - - - - - - - -	-	-											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15 —	-											
10 25 6D 25-27 24/22 22-40- 1D 14497A 10 4 7D 30-32 24/18 16-22- W=9 % 10 4 7D 30-32 24/18 16-22- 27-34 10 4 4 0 35 8D 35-35.3 3/3 50/3* Stratification lines represent approximate boundary between nade at times and under conditiones stated. 8D 35-35.3 3/3 50/3* Stratification lines represent at the time mediation to the to other factors that the time mediation to the stated. (Continued Next Page) (Continued Next Page)	-	- 20		5D	\square	20-22	24/18	11-18-	ID 14243A w =9.2 %				
10 - 25 6D 25-27 24/22 22-40- 31-41 ID 14407A W = 9% W_r = 20 W_r = 12 5 - </td <td></td> <td>[</td> <td></td> <td></td> <td>Δ</td> <td></td> <td></td> <td>29-32</td> <td>W 0.2 /0</td> <td></td> <td></td> <td></td> <td></td>		[Δ			29-32	W 0.2 /0				
10 - 25 6D 25-27 24/22 22-40 1D 14497A W = 9 W 25-27 24/22 22-40 W = 20 W =]									(h)			
1 25 6D 25-27 24/22 22-40- 31-41 ID 14497A W = 90 W = 20 W = 10 5 -	10 -									Ø			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	- 25		60	H	25-27	24/22	22-40-	ID 14497A	H			
Image: Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Image: Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Image: Continued Next Page) BORING NO.: LB-9	-	+			X			31-41	w =9 %				
5 30 7D 30-32 24/18 16-22- 27-34 0 - 35 8D 35-35.3 3/3 50/3" Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Furture of groundwater may occur due to other factors than those present at the time measurements were made.	-	+			H				W _P =12				
5 30 7D 30-32 24/18 16-22- 27-34 0 - 35 8D 35-35.3 3/3 50/3" Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at lines and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. (Continued Next Page)	- 15	f								(A)			
Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. (Continued Next Page) BORING NO.: LB-9	5 -												
Image: statistic state of the state of	-	30		7D	\square	30-32	24/18	16-22-		W			
0 - 35 8D 35-35.3 3/3 50/3" 5 - 8D 35-35.3 3/3 50/3" (Continued Next Page) Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. (Continued Next Page) Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. BORING NO.: LB-9	-				Д			21-04					
0 -35 8D 35-35.3 3/3 50/3" -5 -	-									<i>W</i>			
Image: static	0 -	+											
Image: stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. (Continued Next Page) BORING NO.: LB-9	-	- 35		8D		35-35.3	3/3	50/3"					
Image: Stratification lines represent approximate boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. (Continued Next Page) Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. BORING NO.: LB-9	- 1	+											
-5	- 1	+											
> Image: Continued Next Page Stratification lines represent approximate (Continued Next Page) boundary between soil types, transitions may be (Continued Next Page) gradual. Water level readings have been made Image: Continued Next Page) at times and under conditions stated. Fluctuations of groundwater may occur due to Fluctuations of groundwater may occur due to Other factors than those present at the time measurements were made. BORING NO.: LB-9	- 1	t I								K			
boundary between soil types, transitions may be gradual. Water level readings have been made at times and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. BORING NO.: LB-9	-5 Stratifica	ation lines	represer	nt approxim	nate					1	(Continued Next Page)		
at unities and under conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the time measurements were made. BORING NO.: LB-9	boundar gradual.	y between Water lev	soil type el readir	es, transitions have b	ons i een	may be made							
measurements were made. BORING NO.: LB-9	at times Fluctuat	and under ions of gro	conditionundwate	ons stated. er may occi esent at th	urdı etim	ue to							
	measure	ements we	re made		- ui i							BORING	NO.: LB-9

ſ								E	ORIN	G	LOG	BO		NO.:	LB-9
			CLI	ENT: N	Лof	fatt & Ni	ichol					PR		T NO.	21-1242
			PRO	JECT:	S	ears Isla	and Offs	hore Wi	nd Terminal			DA	TE ST	ART:	8/22/2022
	S.W.C	COLE	LOC	CATION	: _	Sears Is	land, Se	earsport,	Maine			DA	TE FIN	NISH:	8/22/2022
Ī						SAMPL	E INFO	RMATIO	N	bo					
	Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L	Sample Description & Classification		H ₂ 0 Depth		Remarks
ſ	_	-		9D	M	40-42	24/13	25-22- 24-46							
ŀ										<u> ////</u>	Bottom of Exploration at 42.0 feet				
WELL 10-12-2022 21-1242.GPJ SWCE TEMPLATE.GDT 1/10/23	Stratifica boundar gradual	ation lines y between Water lev	represer soil type	tt approxim ss, transitic sg, shave b	nater	may be made									
BORING /	at times Fluctuat other fac measure	and under ions of gro ctors than ements we	r conditio undwate those pr re made	ons stated. er may occu esent at the	ur dı e tim	ue to ne						во	RING	NO.:	LB-9

/ WELL 10-12-2022 21-1242.GPJ SWCE TEMPLATE.GDT 1/10/23

							B	ORIN	GΙ	LOG		E	BORING I	NO.:	RB-1
	7		ENT: <u>N</u> DJECT:	/loff Se	att & N ears Isl	ichol and Offs	shore Wi	nd Terminal				F	ROJECT	' NO	21-1242 8/15/2022
S.W.C	COLE	LOC	CATION	:	Sears Is	sland, Se	earsport,	Maine					DATE FIN	ISH:	8/15/2022
Drillin LOCAT DRILLI	ng Info TION: NG CO.	ormat N. 2878 :S. V	ion 90.9499, V. Cole Ex	E. 8 kplor	84555.2 rations, I	2701 E	ELEVATIO DRILLER:	DN (FT):	5' +/-		TOTAL DEPTH (FT): 10.0 DRILLING METHOD: Solid	LOG	GED BY:	Patrick	Otto
RIG TY HAMME HAMME WATEF	'PE: <u> </u> ER TYPI ER EFFI R LEVEL	rack Mo E: <u>Au</u> ICIENC DEPT	tomatic Y FACTC HS (ft):	0R:	0.852 0.852	H	AUGER ID HAMMER HAMMER ved	/OD:N/A / 4 WEIGHT (Ibs): DROP (inch):	1/2 ir 140 30	ו כוויייייייייייייייייייייייייייייייייי	SAMPLER: <u>Standard Split</u> CASING ID/OD: <u>N/A /N/A</u>	-Spoon COR	E BARREI	L: <u>N/A</u>	
KEY TO AND SY	NOTES	<u>Wate</u> ⊻ At ¥ At ¥ Af	<u>er Level</u> time of Dri Completion ter Drilling	lling n of [Drilling	D = Split S U = Thin W R = Rock (V = Field V	poon Samp Valled Tube Core Sampl /ane Shear	le Pen. = Sample Rec. = e bpf = mpf =	= Pene = Reco Blows Minute	tration Length overy Length per Foot e per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	$S_v = Field N$ $q_U = Uncorr Ø = Friction N/A = Not J$	d Vane Shear Strength, onfined Compressive S ion Angle (Estimated) ot Applicable		kips/sq.ft. trength, kips/sq.f
					SAMPL	E INFO	RMATIO	N	og						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic L		Sample Description & Classification		H ₂ 0 Depth	F	Remarks
-	-		1D 2D	X	0.5-2 2-4	18/9 24/10	15-15- 14 13-11- 11-10			0.4—5" A Med 2.3—som Very	sphalt lium dense, brown SAND and le silt (FILL) y stiff, brown, sandy SILT, so	d GRAVEL, me gravel			
15 —	- 5 -		3D 4D		4-6 6-6.4	24/15 5/4	8-9-15- 20 50/5"	ID 14285A		4.0 <u>(FIL</u> Very (FIL	L) y stiff, brown, gravelly SILT a L)	nd SAND	~		
- 10 — -	- - - 10-		5D	X	8-10	24/22	3-5-9-9	q _P =7.5-8.5 ksf		7.5 Stiff with Very	to very stiff, gray-brown, silty trace rootlets y stiff to hard, brown, silty CL	/ CLAY AY			
											Bollom of Exploration at 10	.U feet			
											bollom of exploration at 10	U feet			
Stratificat boundary gradual. a times a Fluctuatio	tion lines y betweer Water lev and under ons of gro	represer n soil typ /el readin oundwate	nt approxim es, transitio gs have bo ons stated. er may occo	nate ns m een r	nay be nade e to							.u reet			

F				offatt 9 M	lichol	B	ORIN	G	LOG			BORING N SHEET:	NO.: _	RB-2 1 of 1
	フ			Sears Is	land Offs	shore Wi	nd Terminal					DATE ST	ART: _	8/15/2022
S.W.C	COLE		CATION:	Sears I	sland, Se	earsport,	Maine					DATE FIN	ISH:	8/15/2022
Drilli Loca ⁻ DRILLI RIG TY HAMM HAMM WATE	<u>ng Info</u> TION: ING CO. YPE: <u>T</u> IER TYP IER EFF	ormat N. 2867 I.: <u>S. V</u> Frack Mo PE: <u>Au</u> FICIENC	ion 751.84, E. 8 V. Cole Exp punted CME tomatic Y FACTOR 'HS (ft):	84816.84 lorations, 5 850 1: 0.852 No free w	99 E LLC [/ / H 	ELEVATIO DRILLER: AUGER ID HAMMER HAMMER	DN (FT):65.2 Jeff Lee /OD:N/A / 4 WEIGHT (Ibs): DROP (inch):	2' +/- 1/2 i _14 _30	TOTA DRILL SAMF CASIN	L DEPTH (FT):10.0 ING METHOD: _Solid LER: _Standard Split- IG ID/OD: _N/A /N/A	LC Stem Auų Spoon CC	IGGED BY: Jer DRE BARREL	Patrick	: Otto
GENEI KEY TO AND S	RAL NO	OTES: S Wate S: ∑ At ¥ At ¥ Af	<u>er Level</u> time of Drillin Completion of ter Drilling	ng of Drilling	D = Split S U = Thin V R = Rock 0 V = Field V	poon Samp Valled Tube Core Sample /ane Shear	le Pen. = Sample Rec. = e bpf = mpf =	= Pen = Rec Blows Minu	etration Length WOR overy Length WOH per Foot RQD e per Foot PID =	= Weight of Rods = Weight of Hammer = Rock Quality Designation Photoionization Detector	S _v = Field q _U = Unc Ø = Frict N/A = No	Field Vane Shear Strength, kips/sq.ft. Unconfined Compressive Strength, kip riction Angle (Estimated) Not Applicable		
				SAMP	LE INFO	RMATIO	N	b						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample 8 No.	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification		H ₂ 0 Depth	F	Remarks
	-		1D 2D	0.5-2	18/14 24/18	5-16- 15 12-10-	ID 14286A	\bigotimes	0.3 <u>3.5</u> " Aspha Dense, bro 1.8 silt (FILL)	lt wn, SAND and GRAVI	EL, some			
- - 60 —	- - - 5		3D	4-6	24/18	10-11 7-7-9-9			Very stiff, b (FILL)	rown, sandy SILT, son	ne gravel			
-	-		4D	6-8	24/20	12-15- 21-14			5.6 Stiff to very 6.0 some clay Dense, bro	stiff, gray-brown, sand wn gravelly SAND and	dy SILT, I SILT,			
-			50	8-10	24/22	8-18- 13-15			trace clay (GLÁCIAL TILL)				
Stratifica boundaa gradual. at times	ation lines ry betwee . Water lea	s represe n soil typ evel readii	nt approximat es, transitions ngs have bee ons stated.	e s may be n made										
Stratifica boundar gradual. Tuctuat Fluctuat other far measure	ation lines ry betwee I. Water le s and unde tions of gr actors than ements w	s represe n soil typ vel readi roundwate n those pr ere made	nt approximat es, transitions ngs have bee ons stated. er may occur resent at the t s.	e s may be n made due to ime								BORING N	40.:	RB- 2

F							В	ORIN	G	LOG				IG NO.: _	RB-3
		CLI	ENT: N	Moffatt	& Nicho	bl							PROJ	ECT NO.	21-1242
	ノ	PRO	JECT:	Sear	s Island	Offs	hore Wi	nd Terminal					DATE	START:	8/15/2022
S.W.C	OLE	LOC	CATION	I: Sea	rs Island	d, Se	arsport,	Maine					DATE	FINISH:	8/15/2022
Drillin LOCAT DRILLII	IG Info ION: _N NG CO.:	rmat 1. 2855 S. V	ion 94.0601, V. Cole E	, E. 8850 Exploratio	950.4 ons, LLC	E	ELEVATIO	N (FT): 	2' +/-		TOTAL DEPTH (FT): 10.0 DRILLING METHOD: Solid	LC Stem Au	DGGED E	3Y : <u>Patric</u>	ж Otto
RIG TY	PE: Tr	ack Mo	ounted C	ME 850		A	UGER ID	/ OD: N/A / 4	1/2	in	SAMPLER: Standard Split-	Spoon			
HAMME HAMME WATER GENER	ER TYPE ER EFFI & LEVEL AL NOT	E: <u>Au</u> CIENC DEPT ES:	tomatic Y FACT('HS (ft):	DR: <u>0.8</u> No fre	352 ee water o	H H Dbserv	IAMMER	WEIGHT (Ibs) DROP (inch):	: <u>1</u> 4 <u>30</u>	40	Casing ID/OD: <u>N/A /N/A</u>	C(ORE BAF	REL: <u>N//</u>	<u>4</u>
KEY TO AND SY	NOTES MBOLS:	<u>Wate</u> ∑ At ∑ At ∑ At	<u>r Level</u> time of Dr Completic ter Drilling	rilling on of Drillir	D = 9 U = 7 ng R = 1 V = 1	Split Sp Thin W Rock C Field V	poon Samp /alled Tube Core Sample ′ane Shear	le Pen. Sample Rec. e bpf = mpf =	= Pen = Rec Blows Minu	etration Length overy Length s per Foot te per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	$S_v = Fie$ $q_U = UnionØ = FricN/A = N$	ld Vane Sh confined C tion Angle lot Applicat	near Strength ompressive s (Estimated) ble	ı, kips/sq.ft. Strength, kips/sq.
				SAI	MPLE IN	NFOF	RMATIO	N	bo						
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	e ad De ⊢ (f	pth R t) (i	en./ lec. in)	Blow Count or RQD	Field / Lab Test Data	Graphic Lo		Sample Description & Classification		H ₂ Dep	0 oth	Remarks
_	-		1D	0.8	5-2 18	3/12	8-11-		\otimes	0.4 4.5	Asphalt				
100 —	-		2D	2	-4 24	4/20	15 8-8-12- 12			A Med 2.0 GRA Very	Ium dense, brown, SAND and AVEL, some silt (FILL) / stiff, brown, SILT and SAND	, trace			
-	- 5		3D	4	-6 24	4/18	9-10- 12-12	ID 14287A		grav grav	el (FILL)				
95 —	-		4D	6	-8 24	4/9	10-9-9- 7			8.0					
+	-		50	× °	10 24	4/2	15			Som Very	≀ stiff, brown, sandy SILT, son e clay	ne grave	el,		
	- 10								11.	1	Bottom of Exploration at 10.) feet			
Stratificat boundary gradual. at times a Fluctuatio other fact	tion lines r / between Water leve and under ons of gro tors than t	epreser soil type el readir conditio undwate	nt approxin es, transitions have b ons stated. er may occo esent at th	nate ons may b been made cur due to ne time	e e								DO	10.110	
measure	ments we	re made).										BORIN	IG NU.:	КВ- 3

		BOF	RING LOG			BORING NO.:	RB-4
	CLIENT: Moffatt & N	ichol				PROJECT NC). 21-1242
	PROJECT: Sears Isl	and Offshore Wind Ter	minal			DATE START	8/15/2022
SWCOLE	LOCATION: Sears Is	sland, Searsport, Maine	9			DATE FINISH	8/15/2022
Drilling Info	l rmation . 284538.99, E. 885190.540	1 ELEVATION (FT)	: _ 116.2' +/-	TOTAL DEPTH (FT): 10.0		OGGED BY: Pat	rick Otto
DRILLING CO.:	S. W. Cole Explorations, I	LC DRILLER: Jeff L	.ee	DRILLING METHOD: Solid S	Stem Aug	ger	
RIG TYPE: Tra	ack Mounted CME 850	AUGER ID/OD:	N/A / 4 1/2 in	SAMPLER: Standard Split-	poon		
HAMMER TYPE HAMMER EFFIC WATER LEVEL	:: _Automatic CIENCY FACTOR: _0.852 DEPTHS (ft): _No free wa	HAMMER WEIGH HAMMER DROP	IT (lbs): <u>140</u> (inch): <u>30</u>	Casing Id/Od: _N/A /N/A	co	DRE BARREL:	N/A
KEY TO NOTES AND SYMBOLS:	Water Level	D = Split Spoon Sample U = Thin Walled Tube Sample R = Rock Core Sample V = Field Vane Shear	Pen. = Penetration Length Rec. = Recovery Length bpf = Blows per Foot mpf = Minute per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	$S_v = Fieldq_U = UncØ = FrictN/A = No$	d Vane Shear Stren confined Compressivition Angle (Estimate ot Applicable	gth, kips/sq.ft. /e Strength, kips/sq.f d)
	SAMPL	E INFORMATION					
Elev. Depth (ft) (ft)	Casing Pen. (bpf) Sample e Depth No.	Pen./ Blow Rec. or Field (in) RQD	I / Lab Data	Sample Description & Classification		H ₂ 0 Depth	Remarks
	1D 10 5-2	18/6 12-14-	0.3 <u>4</u> " A	sphalt			
115	2D 2-4	15 24/1 7-12- 14-15	2.0 Med 2.0 GRA Very	lium dense, brown, SAND and AVEL, some silt (FILL) / stiff, brown, SILT and SAND,	trace	/	
 5	3D 4-6	24/18 5-11- ID 14 18-12	4288A grav	el (FILL)			
	4D 6-8	24/6 10-14- 20-26					
-	30 0-10	12-17	grav	el (GLACIAL TILL)	some		
10			8///	Bottom of Exploration at 10.0	feet		
Stratification lines ro boundary between gradual. Water leve at times and under Fluctuations of grou other factors than tt	epresent approximate soil types, transitions may be al readings have been made conditions stated. Indwater may occur due to nose present at the time						
measurements wer	e made.					BORING NU.	ND-4

\frown		BO	RING L	.OG		E	BORING NO.:	RB-5
	CLIENT: Moffatt & N	ichol				F	PROJECT NO	. 21-1242
	PROJECT: Sears Isl	and Offshore Wind T	erminal			C	DATE START:	8/15/2022
S.W.COLE	LOCATION: Sears Is	land, Searsport, Mair	ne				DATE FINISH:	8/15/2022
	rmation		E), 106 61 1/					riak Otta
DRILLING CO.:	S. W. Cole Explorations. I	LC DRILLER: Jeff	Lee		DRILLING METHOD: Solid S	LOG Stem Auge	r GED DT : <u>Pau</u>	
RIG TYPE: Tra	ack Mounted CME 850	AUGER ID/OD:	N/A / 4 1/2 in		SAMPLER: Standard Split-S	poon	<u>.</u>	
HAMMER TYPE	: Automatic	HAMMER WEIG	HT (Ibs): 140		CASING ID/OD: N/A /N/A	COR	E BARREL: 1	I/A
HAMMER EFFIC	CIENCY FACTOR: 0.852	HAMMER DROP	o (inch): 30					
GENERAL NOT	DEPTHS (π): No free wa	ater observed						
KEY TO NOTES	Water Level	D = Split Spoon Sample	Pen. = Penetr	ration Length	WOR = Weight of Rods	S, = Field \	/ane Shear Streng	ıth, kips/sq.ft.
AND SYMBOLS:	 ♀ At time of Drilling ♥ At Completion of Drilling ♥ After Drilling 	U = Thin Walled Tube Samp R = Rock Core Sample V = Field Vane Shear	le Rec. = Recov bpf = Blows p mpf = Minute	ery Length er Foot per Foot	WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	$q_{\cup} = Uncor $ Ø = Friction N/A = Not	fined Compressive n Angle (Estimated Applicable	e Strength, kips/sq.ft. l)
	SAMPL	E INFORMATION	Do		0			
Elev. Depth (ft) (ft)	Casing Pen. (bpf) Sample et Depth No.	Pen./ Blow Rec. Count Fie (in) ROD	Id / Lab in the st Data of the st Data in the st Da		Sample Description & Classification		H ₂ 0 Depth	Remarks
		10/0 0.40	XXX) 3 4" A	sphalt			
125 —	10 0.5-2	18/8 9-13-		Den	se, brown, SAND and GRAVE	L, some		
	2D 2-4	24/20 12-10- ID 9-12	14289A	2.2— <u>silt (</u> Verv	FILL) stiff to hard_brown_SILT and	SAND		
	3D 4-6	24/16 4-11-		som	e gravel, trace clay (FILL)	с <i>,</i> атр,		
5		18-14						
120 —	4D 6-8	24/24 12-12-						
		17-21						
					Bottom of Exploration at 10.0	feet		
Stratification lines r boundary between gradual. Water leve	epresent approximate soil types, transitions may be el readings have been made							
at times and under Fluctuations of gro	conditions stated. undwater may occur due to					_		
other factors than t measurements wer	hose present at the time re made.					E	3ORING NO.:	RB- 5

S.W.C		CLI PRO LOO	ent: <u>n</u> Dject: Cation	<u>/loffa</u> Se : Se	att & N ars Isl ears Is	ichol and Offs sland, Se	B shore Win earsport,	ORIN nd Terminal Maine	G	LOG			BORING N SHEET: PROJECT DATE STA DATE FINIS	D.: <u>RB</u> 1 of NO. 21-1 RT: <u>8/15/</u> SH: <u>8/15/</u>	f 1 242 2022
Drillin Locat Drillin Rig Tyl Hamme Hamme Water Gener	ng Info TON: <u>NG CO.:</u> PE: <u>Tr</u> ER TYPE ER EFFI R LEVEL	N. 2832 : S. V rack Mo E: Au CIENC DEPT TES:	ion 203.81, E. V. Cole Ex- pounted CM tomatic Y FACTO THS (ft):	8836 xplora ME 85 DR: _ _∑ 8	649.090 ations, L 50 0.852 3 ft So	1 E _LC E A H H	ELEVATIO DRILLER: AUGER ID HAMMER HAMMER I ed below 8	N (FT): <u>72'</u> <u>Jeff Lee</u> /OD: <u>N/A / 4</u> WEIGHT (Ibs) DROP (inch): 3'	+/- + 1/2 : <u>1</u> 4 <u>30</u>	in 40	TOTAL DEPTH (FT):	LOO Stem Aug Spoon CO	GGED BY: er RE BARREL	Patrick Otto	
KEY TO AND SY) NOTES (MBOLS:	<u>Wate</u> ⊻ At ⊈ At ⊈ Af	er <u>Level</u> time of Dri Completio ter Drilling	illing n of D	rilling	D = Split S U = Thin W R = Rock (V = Field V	poon Samp Valled Tube Core Sample /ane Shear	ble Pen. = Penetration Length N Sample Rec. = Recovery Length N le bpf = Blows per Foot f mpf = Minute per Foot f		etration Length overy Length s per Foot te per Foot	WOR = Weight of Rods WOH = Weight of Hammer RQD = Rock Quality Designation PID = Photoionization Detector	$S_v = Field$ $q_U = Uncc$ Ø = Friction N/A = Not	Vane Shear St onfined Compre on Angle (Estim Applicable	rength, kips/sq.ft ssive Strength, k ated)	t. <ips sq<="" th=""></ips>
Elev. (ft)	Depth (ft)	Casing Pen. (bpf)	Sample No.	Lype	AMPL Depth (ft)	E INFOI Pen./ Rec. (in)	RMATIO Blow Count or RQD	N Field / Lab Test Data	Graphic Log		Sample Description & Classification		H ₂ 0 Depth	Remark	ks
70 -	- - -		1D 2D 3D		0-2 2-4 4-5.4	24/13 24/20 17/14	9-11- 11-11 10-9- 12-11 7-7-	ID 14290A		Med som ^{1.9} Med som	ium dense brown, sandy GR, e silt (FILL) ium dense, brown, SAND an e gravel (FILL)	AVEL, d SILT,			
- 65 -	— 5 - - -		4D	X	8-10	24/18	50/5/5" 3-5-7- 11			5.0 Med SILT 7.5 Stiff, grav	ium dense, gray, gravelly SA , with cobbles (FILL) , brown, SILT and SAND, sor el, some clay	ND and	 \Z		
Stratificat boundary gradual. \	tion lines y between Water lev	represer soil typ	nt approxim es, transitic ngs have b	nate ons ma	ay be lade										
at times a Fluctuatic other fact	and under ons of gro tors than	r conditio oundwate those pr	ons stated. er may occu resent at the	ur due e time	to							_			

		TEST PIT LOGS		PI	ROJE		21-1242
		ENT: Moffatt & Nichol				ED BY: RACTOR·	John Cozens
		DJECT: _Sears Island Offshore Wind Terminal			ompr	ehensive l	and Technologies,
S.W.CO	OLE LOC	CATION: _Sears Island, Searsport, Maine		E	c QUIP	MENT:	
		TEST PIT <u>TP-1</u>		K	omate	su PC 170	LC
DATE:	8/23/2022	_ LOCATION: _ See Exploration Location Plan SURFACE ELEVATION (FT): _ 19' +/-		COMPL	ETIC	N DEPTH	(FT): <u>13.0</u>
WATER		HS (FT):No free water observed REMARKS:					
Depth (feet)	Graphic Log	Stratum Description	H ₂ 0 Depth	Sample No.	Type	Sample Depth (ft)	Field / Lab Test Data
- - - 5 - - - - - - - - - - - - - -		 Porest Duff Brown, damp, gravelly silty SAND, frequent cobbles (±3 to 12" dia.), occasional boulders (±12 to 24" dia.) Light gray, moist, SAND, some gravel, trace silt, trace clay, frequent cobbles (±6 to 12" dia.), occasional boulders (±12 to 24" dia.) 	-	15		2-	ID 14291A
-				28		12-	
		Bottom of Exploration at 13.0 feet					
		TEST PIT TP-2					
DATE:	8/23/2022	LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 23.4' +/-		COMPL	ETIC	N DEPTH	(FT): <u>12.0</u>
WATER							
Depth (feet)	Graphi Log	Stratum Description	H ₂ 0 Depth	Sample No.	Type	Depth (ft)	Field / Lab Test Data
	<u>7.1[×]</u> . <u>7.1[×]</u> . 7	Forest Mat					
-		^{1.0} Reddish-brown, damp, SAND, some gravel, organics and rootlets					
- - - 5 ·		3.0 Light gray, moist, silty SAND, some gravel, trace clay, occasional cobbles (±3 to 12" dia.)					
12/14/22		frequent cobbles (±6 to 10" dia.), occasional boulders (±12 to 24" dia.) below 6' Frequent boulders (±18 to 36" dia.) below 8'					
- 10							
"MCE	<u>vanidi. Ch</u>	Bottom of Exploration at 12.0 feet					
1242.GPJ S							
Stratificat soil types have bee	tion lines repres , transitions ma en made at times ons of groundwa	ent approximate boundary between y be gradual. Water level readings and under conditions stated. ter may occur due to other factors time are new merches. KEY TO NOTES AND SYMBOLS:	ket Penetro	meter Strer	ngth, k	tips/sq.ft.	
	o prosoni ai lite						

		TEST PIT LOGS		PI	ROJE	ECT NO.:	21-1242
	CL	IENT: Moffatt & Nichol				ED BY: _	John Cozens
		OJECT: Sears Island Offshore Wind Terminal		C	ompr	ehensive l	_and Technologies,
S.W.CC	DLE LO	CATION: Sears Island, Searsport, Maine		In	C QUIP	MENT:	
		TEST PIT TP-3		K	omat	su PC 170	LC
DATE: WATER L	8/23/2022 EVEL DEP	LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 34' +/- ITHS (FT): No free water observed REMARKS:		COMPL	ETIC	ON DEPTH	l (FT): <u>12.0</u>
Danth	- Jic			0	e	Sample	Field / Lab
(feet)	Grapl	Stratum Description	Depth	No.	Typ	Depth (ft)	Test Data
	<u>x, 17</u> . <u>x, 17</u> . J	Forest Mat					
	-	dia.), occasional boulders (±12 to 24" dia.)					
		^{3.0} Gray, moist, sandy SILT, some clay, some gravel, frequent cobbles (±4 to 12" dia.), occasional boulders (±12 to 24" dia.) (GLACIAL TILL)					
- 5 -				1S		6-	
- 10 -							
		Bottom of Exploration at 12.0 feet					
DATE:	8/23/2022	LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 24' +/-		COMPL	ETIC	ON DEPTH	l (FT): <u>13.0</u>
WATERL		INS (FT):NO free water observed REMARKS:			1		
Depth (feet)	Graphic Log	Stratum Description	H₂0 Depth	Sample No.	Type	Sample Depth (ft)	Field / Lab Test Data
	<u>XIIZ</u> <u>XIZ</u>	Forest Mat with surface boulders (±12 to 36" dia.)					
-	<u> </u>	1.0 Reddish brown, damp, SAND, some silt, organics and rootlet					
	-	 Light gray, moist, silty SAND, some GRAVEL, trace clay, occasional cobbles (±4 to 8" dia.) 					
- 5 -		6.0 Gray moist sith SAND some gravel trace clay frequent cobbles					
		occasional boulders (±12 to 24" dia.) (GLACIAL TILL)					
	SA A			1S		8-	ID 14292A w =14.3 %
		9.0 Gray, moist, sandy SILT, some clay, some gravel, frequent cobbles,					SG = 2.68
- 10 -		requent boulders (±12 to 36 dia.) (GLACIAL TILL)		2S		10-	
5	<u>IH HA</u>						
		Bottom of Exploration at 13.0 feet					
Stratificati	ion lines repre	sent approximate boundary between KEY TO NOTES Water Level q _p = Pock	et Penetro	meter Strer	ngth, k	kips/sq.ft.	
soil types, have been Fluctuation than those	, transitions m n made at time ns of groundw e present at th	ay be gradual. Water level readings se and under conditions stated. rater may occur due to other factors te time measurements were made. AND SYMBOLS:					
		· · · · · · · · · · · · · · · · · · ·					

ł			TEST PIT LOGS		P	ROJI OGG	ECT NO.:	21-1242 John Cozens
S	W.CC		CATION: Sears Island Offshore Wind Terminal		C C In E	ompr c QUIP	RACTOR: ehensive l MENT:	and Technologies,
DA WA	TE: _	8/23/2022 LEVEL DEPT	TEST PIT TP- 5 LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 41.8' +/- HS (FT): No free water observed REMARKS:		COMPL	omat	su PC 170 DN DEPTH	LC (FT): <u>11.0</u>
C (epth feet)	Graphic Log	Stratum Description	H ₂ 0 Depth	Sample No.	Type	Sample Depth (ft)	Field / Lab Test Data
		<u>741^N 71^N 7</u>	0.5 Forest Mat	-				
F			Reddish brown, damp, silty SAND, with organics and rootlet	_				
-	5 -	- - -	dia.), occasional boulders (±18 to 24" dia.)					
-	10 -		^{6.0} Light gray, moist, silty SAND, some clay, frequent cobbles (±3 to 12" dia.), occasional boulders (±12 to 24" dia.)	-				
	10 -							
DA W/	TE:	8/23/2022 L EVEL DEPT	TEST PIT TP- 6 LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 22.9' +/- HS (FT): No free water observed REMARKS:		COMPL	.ETIC	ON DEPTH	(FT): <u>11.5</u>
C ()epth feet)	Graphic Log	Stratum Description	H ₂ 0 Depth	Sample No.	Type	Sample Depth (ft)	Field / Lab Test Data
		<u>74 1^N</u> <u>74 1^N</u> 74	Forest Mat, surface boulders (±24 to 48" dia.)					
-			^{1.0} Brown, moist, gravelly silty SAND, frequent cobbles (±3 to 9" dia.)	-	19		2	
-	5 -		 Gray, moist, sandy SILT, some clay, trace gravel, occasional cobbles (±4 to 9" dia.) (GLACIAL TILL) 				5-	ID 14293A w =9.4 %
T 12/14/22					25		7-	ID 14294A w =15.2 %
	10 -		Gray, moist, sandy SILT, some clay, trace gravel, frequent cobbles (±3 to 12" dia.), frequent boulders (±12 to 24" dia.) (GLACIAL TILL)		35		10-	ID 14295A w =13.1 %
-1242.GPJ SWCE TI			Bottom of Exploration at 11.5 feet			,		
TEST PIT 21- H H S S S	tratificati bil types, ave beer uctuatio an those	ion lines repres , transitions ma n made at times ons of groundwa e present at the	ent approximate boundary between y be gradual. Water level readings s and under conditions stated. ater may occur due to other factors time measurements were made.	ket Penetro	meter Strei	ngth, ł	kips/sq.ft.	

		TEST PIT LOGS		P	ROJE	CT NO.:	21-1242
		IENT: Moffatt & Nichol					John Cozens
		OJECT: Sears Island Offshore Wind Terminal		— c	ompr	ehensive l	and Technologies,
SWC		CATION: Sears Island, Searsport, Maine		ln			
0		TEST PIT TP. 7		K	omat	su PC 170	LC
DATE:	8/23/2022	LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 33.1' +/-		COMPL	ETIC	N DEPTH	(FT): 13.0
WATER	LEVEL DEP	THS (FT): No free water observed REMARKS:		-			
	ic				d)	Sample	E : 11/1 1
(feet)	Log	Stratum Description	Depth	Sample No.	Type	Depth	Test Data
· ,	U					(π)	
		Forest Mat 0.5 Reddish brown, fine to medium SAND, trace silt, with organics and	-				
		$r_{1,5}$ rootlet	-			1 5	q _P =5.5 ksf
-		Gray, moist, silty CLAY, trace sand				1.5-	
-							
-	¥//////			10			
5 -				10		4-	ID 14296A w =28.9 %
							W _L =42 W ₂ =18
						6-	q _P =2.0 ksf
-	-\//////						
-	¥//////						
10							
-		Gray, moist, sandy SILT, some gravel, trace clay, occasional cobbles	-				
-		(±3 to 12" dia.), occasional boulders (±12 to 18" dia.) (GLACIAL TILL)		25		12-	
	<u>IHHI</u>			20		12	w =12 %
		Bottom of Exploration at 13.0 feet					
		TEST PIT TP-8					
DATE:	8/23/0222	LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 18.8' +/-		COMPL	ETIC	N DEPTH	(FT): <u>13.0</u>
WATER I	LEVEL DEP	THS (FT): No free water observed REMARKS:	1	1			
Depth	ghic		H ₂ 0	Sample	e	Sample	Field / Lab
(feet)	Grap Lo	Stratum Description	Depth	No.	Ţ	Deptn (ft)	Test Data
	<u></u>	Topsoil/ grass				. ,	
-		Brown, damp, sandy fine to coarse GRAVEL, trace silt (FILL)					
		8					
T I							
-		4.0 Gray, moist, silty SAND, some clay, some gravel, frequent cobbles (±3	-				
- 5 -		to 8" dia.), occasional boulders (±14" dia.) (GLACIAL TILL)					
-	LAN .						
	- WH			1S		7-	ID 14298A
							w =12.8 %
	- HAL						
- 10 -							
	<u>INH</u>						
	(NA)						
<u></u>	<u> </u>	Bottom of Exploration at 13.0 feet		I	1		
5		· · · · ·					
-							
Stratificat soil types	ion lines repre	sent approximate boundary between av be gradual. Water level readings AND SYMBOLS: $Vater Level = q_p = Pocl$	ket Penetro	meter Strer	ngth, I	kips/sq.ft.	
have been	n made at tim	es and under conditions stated.					
		ie time measurements were made.					

		TEST PIT LOGS		Pi	ROJE		21-1242
		ENT: Moffatt & Nichol				RACTOR:	John Cozens
		DJECT: Sears Island Offshore Wind Terminal		C	ompr	ehensive L	and Technologies,
S.W.C	OLE LOC	CATION: Sears Island, Searsport, Maine			c QUIP	MENT:	
		TEST PIT TP-9		Ko	omate	su PC 170	LC
DATE:	8/23/2022	LOCATION: See Exploration Location Plan SURFACE ELEVATION (FT): 35.5' +/-		COMPL	ETIC	N DEPTH	(FT): 13.0
WATER	LEVEL DEPT	HS (FT): No free water observed REMARKS:					
	jc –				a)	Sample	
(feet)	Loc	Stratum Description	Depth	No.	Typ	Depth	Test Data
· ,	0				Ľ	(π)	
	<u></u>	Forest Mat	-				
		dia.)					
-		^{2.0} Gray, silty CLAY, trace fine sand	1				
-							
- 5							
-						6-	q _P =1.0 ksf
-				1S		6.5-	ID 14299A
							w =33 % W _L =37
							W _P =17
-							
- 10	-\///////						
-	-X////////						
-		Bottom of Exploration at 13.0 feet				1	
DATE.	8/23/2022	IEJI FII <u>IF-IU</u>		COMPI	ETIC		(ET) • 13.0
WATER	LEVEL DEPT	HS (FT): No free water observed REMARKS:					(11) . <u>10.0</u>
	<u>.</u> 0					Sample	
Depth (feet)	aph	Stratum Description	H₂0 Depth	Sample No	ype	Depth	Field / Lab Test Data
()	Ū		Dopui			(ft)	Toor Data
	0	0.3 Topsoil with grass	1				
-	- 0 (\) 0	dia.)					
-							
-	www.	30 Brown maint grouply CAND and CILT trace alow frequent aphbles (16	-	10		2	
		to 12" dia.), occasional boulders (±12 to 24" dia.)		15		3-	ID 14300A w =9.7 %
	- HALLIG						
- 5							
F	- HARA	G.0 Gray, moist, silty SAND. some clay. some gravel. frequent cobbles (+3	-				
		to 12" dia.), occasional boulders (±12 to 24" dia.)					
14/2	<u>INNI</u>						
121	(J)//J)						
	- WALLIA						
≝ 10				2S		10-	
	- XIXIII						w =14.6 %
<u>н</u>	<u>HHA</u>						
2MC	- SAABA						
2 2	//_/_////////	Bottom of Exploration at 13.0 feet					
242.0							
Stratifica	ation lines repres	ent approximate boundary between KEY TO NOTES Water Level a = Poo	ket Penetro	neter Strer	nath k	ins/sa ft	
soil types	s, transitions ma en made at times	y be gradual. Water level readings and under conditions stated.					
Fluctuati	ions of groundwa	ater may occur due to other factors the time measurements were made.					

MB-1 Runs 1 and 2 MB-4 Runs 1, 2, and 3

MB-10, Runs 1, 2, and 3 MB-2, Run 1

MB-2, Run 2 MB-3A, Runs 1 and 2 MB-5, Runs 1 and 2 (partial)

MB-5, Runs 2 (partial) and 3 MB-7, Runs 1, 2, and 3

www.swcole.com

APPENDIX D

Laboratory Test Results

Exploration

Moffatt & Nichol

MB-1, 1D, 0-2 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14064A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

Sieve Analysis			Hydrometer Analysis			
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification	Particle Size (mm)	Amount Passing (%)	
3"	76	100		 0.06507	68.4	
2"	50	100		0.04712	57.0	
11⁄2"	38.1	100		0.03358	51.3	
1"	25	100		0.03358	51.3	
3/4"	19	100		0.02401	48.4	
1/2"	12.5	100		0.01717	42.7	
1/4"	6.3	100		0.01263	34.2	
No. 4	4.75	100		0.00903	28.5	
No. 10	2	100		0.00643	22.8	
No. 20	0.85	98		0.00454	19.9	
No. 40	0.425	96		0.00321	17.1	
No. 60	0.25	93		0.00229	14.2	
No. 100	0.15	91		0.00132	11.4	
No. 200	0.075	81.6				

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

Project Number	21-1242
Lab ID	14074A
Date Received	7/29/2022
Date Completed	8/1/2022
Tested By	ALEXANDREA ALLEN

Material Source MB-3A, 3D, 50-52FT

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150	C !!	400	
150 mm	0	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	90	
19.0 mm	3/4"	86	
12.5 mm	1/2"	80	
9.5 mm	3/8"	76	
6.3 mm	1/4"	64	
4.75 mm	No. 4	56	43.7% Gravel
2.00 mm	No. 10	33	
850 um	No. 20	19	
425 um	No. 40	12	52% Sand
250 um	No. 60	8	
150 um	No. 100	6	
75 um	No. 200	4.3	4.3% Fines

Exploration

Moffatt & Nichol

MB-4, 1D, 0-2 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14077A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

Sieve Analysis				Hydrome	Hydrometer Analysis			
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification (name)	Particle Size (mm)	Amount Passing (%)			
3"	76	100		0.06639	24.6			
2"	50	100		0.04801	19.4			
11⁄2"	38.1	100		0.03456	14.3			
1"	25	100		0.03456	14.3			
3/4"	19	100		0.02461	11.7			
1/2"	12.5	100		0.01740	10.4			
1⁄4"	6.3	98		0.01271	10.4			
No. 4	4.75	97		0.00908	9.1			
No. 10	2	92		0.00642	7.8			
No. 20	0.85	88		0.00459	5.2			
No. 40	0.425	82		0.00324	5.2			
No. 60	0.25	73		0.00231	2.6			
No. 100	0.15	56		0.00133	2.6			
No. 200	0.075	27.5						

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

Project Number	21-1242
Lab ID	14078A
Date Received	7/29/2022
Date Completed	8/2/2022
Tested By	ALEXANDREA ALLEN

Material Source MB-4A, 3D, 30-32FT

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	0	100	
100 mm	4	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	92	
12.5 mm	1/2"	90	
9.5 mm	3/8"	88	
6.3 mm	1/4"	86	
4.75 mm	No. 4	84	15.9% Gravel
2.00 mm	No. 10	78	
850 um	No. 20	73	
425 um	No. 40	68	31% Sand
250 um	No. 60	63	
150 um	No. 100	59	
75 um	No. 200	53.1	53.1% Fines

Exploration

Moffatt & Nichol

MB-5, 1D, 0-2 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14079A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

Sieve Analysis				Hydrometer Analysis			
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification	Particle Size (mm)	Amount Passing (%)		
3"	76	100		0.05944	53.0		
2"	50	100		0.04243	50.3		
11⁄2"	38.1	100		0.03042	47.5		
1"	25	100		0.03042	47.5		
3/4"	19	100		0.02199	42.1		
1⁄2"	12.5	93		0.01575	39.4		
1⁄4"	6.3	89		0.01165	35.3		
No. 4	4.75	87		0.00830	32.6		
No. 10	2	82		0.00601	27.2		
No. 20	0.85	76		0.00433	23.1		
No. 40	0.425	72		0.00306	21.7		
No. 60	0.25	68		0.00219	19.0		
No. 100	0.15	63		0.00129	14.9		
No. 200	0.075	55.3					

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

Exploration

Moffatt & Nichol

MB-6, 1D, 0-2 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14082A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

Sieve Analysis				ŀ	Hydrometer Analysis			
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification	Partic (n	cle Size nm)	Amount (%	Passing %)	
3"	76	100		0.0	5800	18	3.1	
2"	50	100		0.0	4203	16	6.8	
11⁄2"	38.1	100		0.0	3000	15	5.9	
1"	25	100		0.0	3000	15	5.9	
3/4"	19	100		0.0	2180	14	.2	
1⁄2"	12.5	100		0.0	1555	12	2.9	
1⁄4"	6.3	35		0.0	1150	12	2.1	
No. 4	4.75	33		0.0	0830	10	.3	
No. 10	2	28		0.0	0601	9	.0	
No. 20	0.85	26		0.0	0433	7.	.3	
No. 40	0.425	25		0.0	0306	6	.9	
No. 60	0.25	23		0.0	0219	6	.0	
No. 100	0.15	21		0.0	0127	5	.2	
No. 200	0.075	19.4						

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

Exploration

Moffatt & Nichol

MB-6, 2D, 5-7 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14083A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

Sieve Analysis				Hydrom	eter Analysis
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification	Particle Size (mm)	Amount Passing (%)
3"	76	100		0.06166	21.2
2"	50	100		0.04455	18.6
11⁄2"	38.1	100		0.03150	18.0
1"	25	100		0.03150	18.0
3/4"	19	100		0.02274	16.1
1/2"	12.5	100		0.01628	14.8
1/4"	6.3	42		0.01203	13.5
No. 4	4.75	35		0.00857	12.2
No. 10	2	33		0.00613	10.3
No. 20	0.85	30		0.00441	8.4
No. 40	0.425	28		0.00312	8.4
No. 60	0.25	26		0.00223	6.4
No. 100	0.15	24		0.00130	5.8
No. 200	0.075	21.6			

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

Exploration

Moffatt & Nichol

MB-7, 2D, 5-7 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14084A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

	Sieve	Hydrometer Analysis			
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification	Particle Size (mm)	Amount Passing (%)
3"	76	100		0.06012	21.2
2"	50	100		0.04351	18.9
11⁄2"	38.1	100		0.03119	18.4
1"	25	100		0.03119	18.4
3/4"	19	100		0.02225	16.7
1/2"	12.5	100		0.01593	15.6
1/4"	6.3	57		0.01178	14.5
No. 4	4.75	50		0.00850	12.8
No. 10	2	35		0.00608	11.1
No. 20	0.85	32		0.00429	10.0
No. 40	0.425	30		0.00306	8.9
No. 60	0.25	28		0.00219	8.4
No. 100	0.15	26		0.00127	6.7
No. 200	0.075	23.5			

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

Exploration

Moffatt & Nichol

MB-8, 1D, 0-2 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14086A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

Sieve Analysis				Hydrometer Analysis				
	Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification	Partic (m	le Size ım)	Amount (%	Passing %)
	3"	76	100		0.06	3154	53	.8
	2"	50	100		0.04	1449	49	.1
	11⁄2"	38.1	100		0.03	3187	44	.3
	1"	25	100		0.03	3187	44	.3
	3/4"	19	100		0.02	2282	41	.2
	1/2"	12.5	100		0.0	1627	38	.0
	1/4"	6.3	96		0.01	1217	33	.2
	No. 4	4.75	95		0.00)857	30	.1
	No. 10	2	89		0.00	0613	25	5.3
	No. 20	0.85	82		0.00	0438	23	5.7
	No. 40	0.425	76		0.00	0310	23	5.7
	No. 60	0.25	70		0.00)223	17	.4
	No. 100	0.15	65		0.00)129	15	.8
	No. 200	0.075	58.4					

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client MOFFATT & NICHOL

Project Number	21-1242
Lab ID	14087A
Date Received	7/29/2022
Date Completed	8/2/2022
Tested By	ALEXANDREA ALLEN

Material Source MB-8, 4D, 15-17FT

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	l
1-0			
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	100	
6.3 mm	1/4"	97	
4.75 mm	No. 4	94	6.1% Gravel
2.00 mm	No. 10	88	
850 um	No. 20	82	
425 um	No. 40	77	34% Sand
250 um	No. 60	72	
150 um	No. 100	67	
75 um	No. 200	59.9	59.9% Fines

Exploration

Moffatt & Nichol

MB-9, 2D, 5-7 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14088A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

Sieve Analysis					Hydrom	eter Analysis
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification (name)		Particle Size (mm)	Amount Passing (%)
3"	76	100		_	0.06792	14.9
2"	50	100			0.04803	14.2
11⁄2"	38.1	100			0.03434	13.0
1"	25	100			0.03434	13.0
3/4"	19	100			0.02446	11.7
1/2"	12.5	100			0.01748	11.0
1⁄4"	6.3	73			0.01277	10.4
No. 4	4.75	67			0.00899	9.1
No. 10	2	44			0.00635	9.1
No. 20	0.85	35			0.00454	7.8
No. 40	0.425	29			0.00324	7.1
No. 60	0.25	23			0.00229	6.8
No. 100	0.15	19			0.00132	6.5
No. 200	0.075	15.1				

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

Exploration

Moffatt & Nichol

MB-10, 2D, 5-7 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14089A
Date Received:	7/29/2022
Date Completed:	8/24/2022
Tested By:	N. Davis

Sieve Analysis					Hydrometer Analysis			
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification		Particle Size (mm)	Amount Passing (%)		
3"	76	100		-	0.05867	25.2		
2"	50	100			0.04190	24.0		
11⁄2"	38.1	100			0.03006	22.8		
1"	25	100			0.03006	22.8		
3/4"	19	100			0.02146	21.1		
1/2"	12.5	100			0.01559	19.3		
1⁄4"	6.3	65			0.01164	17.0		
No. 4	4.75	57			0.00830	14.6		
No. 10	2	36			0.00601	12.3		
No. 20	0.85	34			0.00433	9.9		
No. 40	0.425	32			0.00310	8.8		
No. 60	0.25	31			0.00221	7.6		
No. 100	0.15	29			0.00129	5.8		
No. 200	0.075	27.4						

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 LB-1

Material Source LB-1, 3D, 10-12 FT

Project Number	21-1242
Lab ID	14229A
Date Received	9/21/2022
Date Completed	9/26/2022
Tested By	ERNEST FORGIONE JR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	97	
4.75 mm	No. 4	95	4.7% Gravel
2.00 mm	No. 10	90	
850 um	No. 20	83	
425 um	No. 40	76	39% Sand
250 um	No. 60	70	
150 um	No. 100	64	
75 um	No. 200	56.3	56.3% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-2

Exploration

Material Source LB-2, 2D, 5-7 FT

Project Number 21-1242 Lab ID 14230A Date Received 9/21/2022 Date Completed 9/26/2022 Tested By ERNEST FORGIONE JR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	l
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	97	
6.3 mm	1/4"	94	
4.75 mm	No. 4	91	9.5% Gravel
2.00 mm	No. 10	84	
850 um	No. 20	77	
425 um	No. 40	70	38.1% Sand
250 um	No. 60	64	
150 um	No. 100	59	
75 um	No. 200	52.5	52.5% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 LB-2

Material Source LB-2, 4D, 15-17 FT

Project Number21-1242Lab ID14231ADate Received9/21/2022Date Complete9/26/2022Tested ByERNEST FORGIONE JR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	97	
9.5 mm	3/8"	96	
6.3 mm	1/4"	94	
4.75 mm	No. 4	93	7.5% Gravel
2.00 mm	No. 10	88	
850 um	No. 20	81	
425 um	No. 40	75	37.7% Sand
250 um	No. 60	68	
150 um	No. 100	62	
75 um	No. 200	54.8	54.8% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-3

Exploration

Material Source LB-3, 2D, 5-7 FT

Project Number 21-1242 Lab ID 14232A Date Received 9/21/2022 Date Completed 9/26/2022 Tested By ERNEST FORGIONE JR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75	4	100	
75 mm	3	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	99	
9.5 mm	3/8"	99	
6.3 mm	1/4"	96	
4.75 mm	No. 4	95	4.6% Gravel
2.00 mm	No. 10	89	
850 um	No. 20	80	
425 um	No. 40	72	45.4% Sand
250 um	No. 60	65	
150 um	No. 100	58	
75 um	No. 200	50.0	50% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 LB-3

Material Source LB-3. 4D, 15-17 FT

Project Number21-1242Lab ID14233ADate Received9/21/2022Date Completed9/26/2022Tested ByERNEST FORGIONE JR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	96	
9.5 mm	3/8"	96	
6.3 mm	1/4"	94	
4.75 mm	No. 4	93	7.2% Gravel
2.00 mm	No. 10	88	
850 um	No. 20	82	
425 um	No. 40	75	36.6% Sand
250 um	No. 60	69	
150 um	No. 100	63	
75 um	No. 200	56.2	56.2% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-4

Exploration

Material Source LB-4, 2D, 5-7 FT

Project Number 21-1242 Lab ID 14234A Date Received 9/21/2022 Date Completed 9/26/2022 Tested By ERNEST FORGIONE JR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	96	
12.5 mm	1/2"	94	
9.5 mm	3/8"	93	
6.3 mm	1/4"	91	
4.75 mm	No. 4	89	10.9% Gravel
2.00 mm	No. 10	83	
850 um	No. 20	75	
425 um	No. 40	67	41.6% Sand
250 um	No. 60	61	
150 um	No. 100	55	
75 um	No. 200	47.6	47.6% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-5

Exploration

Material Source LB-5, 2D, 5-7 FT

Project Number 21-1242 Lab ID 14235A Date Received 9/21/2022 Date Completed 9/26/2022 Tested By ERNEST FORGIONE JR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	1
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	98	
4.75 mm	No. 4	97	3% Gravel
2.00 mm	No. 10	92	
850 um	No. 20	86	
425 um	No. 40	81	34.9% Sand
250 um	No. 60	75	
150 um	No. 100	69	
75 um	No. 200	62.0	62% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-6

Exploration

Material Source LB-6, 2D, 5-7 FT

Project Number 21-1242 Lab ID 14236A Date Received 9/21/2022 Date Completed 9/26/2022 Tested By ERNEST FORGIONE JR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	97	
4.75 mm	No. 4	95	5.4% Gravel
2.00 mm	No. 10	89	
850 um	No. 20	82	
425 um	No. 40	76	38% Sand
250 um	No. 60	70	
150 um	No. 100	64	
75 um	No. 200	56.6	56.6% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-6

Exploration

Material Source LB-6, 4D, 15-17 FT

Project Number 21-1242 Lab ID 14237A Date Received 9/21/2022 Date Completed 9/30/2022 Tested By RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
135 mm	5"	100	
125 11111	5	100	
TOO mm	4	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	100	
6.3 mm	1/4"	98	
4.75 mm	No. 4	96	4% Gravel
2.00 mm	No. 10	92	
850 um	No. 20	85	
425 um	No. 40	78	38.1% Sand
250 um	No. 60	72	
150 um	No. 100	66	
75 um	No. 200	57.9	57.9% Fines

Material Source LB-7, 1D, 0-2 FT

Report of Gradation

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -
EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 LB-7

Project Number21-1242Lab ID14238ADate Received9/21/2022Date Completed9/30/2022Tested ByBRANDON CHAPUT

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	97	
6.3 mm	1/4"	89	
4.75 mm	No. 4	87	13.4% Gravel
2.00 mm	No. 10	70	
850 um	No. 20	48	
425 um	No. 40	32	75.5% Sand
250 um	No. 60	23	
150 um	No. 100	17	
75 um	No. 200	11.0	11% Fines

Comments: As Delivered MC: 21.91%

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -
EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 LB-7

Material Source LB-7, 3D, 10-12 FT

Project Number	21-1242
Lab ID	14239A
Date Received	9/21/2022
Date Completed	9/30/2022
Tested By	BRANDON CHAPUT

<u>STANDARD</u> DESIGNATION (mm/µm)	SIEVE SIZE	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	96	
9.5 mm	3/8"	95	
6.3 mm	1/4"	93	
4.75 mm	No. 4	92	8.4% Gravel
2.00 mm	No. 10	86	
850 um	No. 20	81	
425 um	No. 40	77	27.9% Sand
250 um	No. 60	73	
150 um	No. 100	69	
75 um	No. 200	63.6	63.6% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-8

Exploration

Material Source LB-8, 2D, 5-7 FT

Project Number 21-1242 Lab ID 14240A Date Received 9/21/2022 Date Completed 9/30/2022 Tested By **BRANDON CHAPUT**

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	92	
19.0 mm	3/4"	92	
12.5 mm	1/2"	92	
9.5 mm	3/8"	91	
6.3 mm	1/4"	89	
4.75 mm	No. 4	87	12.5% Gravel
2.00 mm	No. 10	81	
850 um	No. 20	73	
425 um	No. 40	66	42% Sand
250 um	No. 60	60	
150 um	No. 100	54	
75 um	No. 200	45.5	45.5% Fines

Sheet

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-8

Exploration

Material Source LB-8, 5D, 20-22 FT

Project Number 21-1242 Lab ID 14241A Date Received 9/21/2022 Date Completed 9/27/2022 RICHARD SEYMOUR Tested By

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	<u>AMOUNT PASSING (%)</u>	
150 mm	6"	100	
125 mm	5"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	94	
9.5 mm	3/8"	80	
6.3 mm	1/4"	63	
4.75 mm	No. 4	58	42.3% Gravel
2.00 mm	No. 10	45	
850 um	No. 20	38	
425 um	No. 40	33	34.5% Sand
250 um	No. 60	30	
150 um	No. 100	27	
75 um	No. 200	23.2	23.2% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-9

Exploration

Material Source LB-9, 2D, 5-7 FT

Project Number 21-1242 Lab ID 14242A Date Received 9/21/2022 Date Completed 9/27/2022 RICHARD SEYMOUR Tested By

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	1
150 mm	6"	100	
100 mm	۵ 4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	97	
6.3 mm	1/4"	96	
4.75 mm	No. 4	94	5.8% Gravel
2.00 mm	No. 10	88	
850 um	No. 20	83	
425 um	No. 40	78	32.5% Sand
250 um	No. 60	73	
150 um	No. 100	68	
75 um	No. 200	61.7	61.7% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** LB-9

Exploration

Material Source LB-9, 5D, 20-22 FT

Project Number 21-1242 Lab ID 14243A Date Received 9/21/2022 Date Completed 9/27/2022 RICHARD SEYMOUR Tested By

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	97	
6.3 mm	1/4"	95	
4.75 mm	No. 4	93	7.1% Gravel
2.00 mm	No. 10	86	
850 um	No. 20	78	
425 um	No. 40	71	39.9% Sand
250 um	No. 60	65	
150 um	No. 100	59	
75 um	No. 200	53.1	53.1% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 RB-1

Material Source RB-1, 3D, 4.0-6.0 FT

Project Number	21-1242
Lab ID	14285A
Date Received	10/3/2022
Date Completed	10/4/2022
Tested By	RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	93	
12.5 mm	1/2"	86	
9.5 mm	3/8"	85	
6.3 mm	1/4"	84	
4.75 mm	No. 4	83	16.9% Gravel
2.00 mm	No. 10	79	
850 um	No. 20	70	
425 um	No. 40	64	35.9% Sand
250 um	No. 60	58	
150 um	No. 100	53	
75 um	No. 200	47.2	47.2% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -
EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 RB-2

Material Source RB-2, 1D, 0.5-1.8 FT

Project Number	21-1242
Lab ID	14286A
Date Received	10/3/2022
Date Completed	10/4/2022
Tested By	RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	86	
19.0 mm	3/4"	75	
12.5 mm	1/2"	74	
9.5 mm	3/8"	69	
6.3 mm	1/4"	63	
4.75 mm	No. 4	59	41.1% Gravel
2.00 mm	No. 10	46	
850 um	No. 20	34	
425 um	No. 40	26	45.8% Sand
250 um	No. 60	21	
150 um	No. 100	17	
75 um	No. 200	13.2	13.2% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** Exploration RB-3

Material Source RB-3, 3D, 4.0-6.0 FT

Project Number 21-1242 Lab ID 14287A Date Received 10/3/2022 Date Completed 10/4/2022 Tested By RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	99	
9.5 mm	3/8"	98	
6.3 mm	1/4"	97	
4.75 mm	No. 4	96	3.9% Gravel
2.00 mm	No. 10	88	
850 um	No. 20	76	
425 um	No. 40	68	44.5% Sand
250 um	No. 60	62	
150 um	No. 100	58	
75 um	No. 200	51.7	51.7% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** RB-4

Exploration

Material Source RB-4, 3D, 4.0-6.0 FT

Project Number 21-1242 Lab ID 14288A Date Received 10/3/2022 Date Completed 10/4/2022 Tested By RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	<u>AMOUNT PASSING (%)</u>	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	99	
9.5 mm	3/8"	98	
6.3 mm	1/4"	96	
4.75 mm	No. 4	95	5.3% Gravel
2.00 mm	No. 10	89	
850 um	No. 20	80	
425 um	No. 40	72	40.6% Sand
250 um	No. 60	66	
150 um	No. 100	61	
75 um	No. 200	54.1	54.1% Fines

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** RB-5

Exploration

Material Source RB-5, 2D, 2.2-4.0 FT

Project Number 21-1242 Lab ID 14289A Date Received 10/3/2022 Date Completed 10/4/2022 Tested By RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	97	
9.5 mm	3/8"	95	
6.3 mm	1/4"	93	
4.75 mm	No. 4	91	8.7% Gravel
2.00 mm	No. 10	87	
850 um	No. 20	81	
425 um	No. 40	74	37% Sand
250 um	No. 60	68	
150 um	No. 100	62	
75 um	No. 200	54.3	54.3% Fines

Sheet

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL RB-6**

Exploration

Material Source RB-6, 2D, 2.0-4.0 FT

Project Number	21-1242
Lab ID	14290A
Date Received	10/3/2022
Date Completed	10/4/2022
Tested By	RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	98	
6.3 mm	1/4"	96	
4.75 mm	No. 4	93	7.1% Gravel
2.00 mm	No. 10	83	
850 um	No. 20	70	
425 um	No. 40	61	48.6% Sand
250 um	No. 60	55	
150 um	No. 100	50	
75 um	No. 200	44.3	44.3% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 TP-1

Material Source TP-1, S1, 2 FT

Project Number21-1242Lab ID14291ADate Received10/3/2022Date Completed10/4/2022Tested ByRICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	1
150 mm	6"	100	
100 mm	4"	100	
100 mm	4	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	90	
19.0 mm	3/4"	90	
12.5 mm	1/2"	82	
9.5 mm	3/8"	79	
6.3 mm	1/4"	75	
4.75 mm	No. 4	72	27.9% Gravel
2.00 mm	No. 10	62	
850 um	No. 20	52	
425 um	No. 40	44	43.8% Sand
250 um	No. 60	39	
150 um	No. 100	34	
75 um	No. 200	28.3	28.3% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 TP-4

Material Source TP-4, S1, 8.0-10.0 FT

Project Number	21-1242
Lab ID	14292A
Date Received	10/3/2022
Date Completed	10/4/2022
Tested By	RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	98	
9.5 mm	3/8"	98	
6.3 mm	1/4"	95	
4.75 mm	No. 4	94	5.7% Gravel
2.00 mm	No. 10	89	
850 um	No. 20	84	
425 um	No. 40	79	28.8% Sand
250 um	No. 60	75	
150 um	No. 100	71	
75 um	No. 200	65.5	65.5% Fines

Report of Specific Gravity of Soil Solids

ASTM D854

Project Name:	21-1242	Project Number:	21-1242
Project Location:	Searsport, ME	Lab ID:	14292A
Client:	Project No.	Date Received:	10/03/22
Material Description:	Test Pit	Date Completed:	10/14/22
Material Source:	TP-4, S1, 8.0-10.0 ft	Tested By:	N. Davis

Specific Gravity of Soil Solids	2.683 (@ 20°C)
% Passing the #4 Sieve	100%
Visual Soil Classification	Clay-Silt
Soil Moisture Condition (Method)	As Recieved (A)
Test Temperature	22.7 °C
Material excluded from test	0

Comments:

Reviewed By:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

ASTM C-117 & C-136

Project Name SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES Client **MOFFATT & NICHOL** TP-6

Exploration

Material Source TP-6, S1, 3 FT

Project Number 21-1242 Lab ID 14293A Date Received 10/3/2022 Date Completed 10/4/2022 Tested By RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	98	
19.0 mm	3/4"	97	
12.5 mm	1/2"	94	
9.5 mm	3/8"	91	
6.3 mm	1/4"	86	
4.75 mm	No. 4	83	17.4% Gravel
2.00 mm	No. 10	73	
850 um	No. 20	61	
425 um	No. 40	50	53.9% Sand
250 um	No. 60	42	
150 um	No. 100	36	
75 um	No. 200	28.7	28.7% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

Exploration **TP-6**

Material Source TP-6, S2, 7 FT

Project Number21-1242Lab ID14294ADate Received10/3/2022Date Completed10/4/2022Tested ByRICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
450	01	400	
150 mm	0	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	98	
6.3 mm	1/4"	98	
4.75 mm	No. 4	97	3.2% Gravel
2.00 mm	No. 10	91	
850 um	No. 20	86	
425 um	No. 40	81	30.5% Sand
250 um	No. 60	76	
150 um	No. 100	72	
75 um	No. 200	66.2	66.2% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 TP-6

Material Source TP-6, S3, 10 FT

Project Number21-1242Lab ID14295ADate Received10/3/2022Date Completed10/4/2022Tested ByRICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	100	
9.5 mm	3/8"	99	
6.3 mm	1/4"	97	
4.75 mm	No. 4	96	4.4% Gravel
2.00 mm	No. 10	90	
850 um	No. 20	84	
425 um	No. 40	79	29.7% Sand
250 um	No. 60	75	
150 um	No. 100	71	
75 um	No. 200	65.9	65.9% Fines

Searsport, ME

TP-7, S1, 4 ft

Test Pit

Moffatt & Nichol

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14296A
Date Received:	10/3/2022
Date Completed:	10/12/2022
Tested By:	N. Davis

Sieve Analysis			Hydrometer Analysis		
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification	Particle Size (mm)	Amount Passing (%)
3"	76	100		0.04788	98.0
2"	50	100		0.03463	95.1
11⁄2"	38.1	100		0.02449	93.7
1"	25	100		0.02449	93.7
3/4"	19	100		0.01757	90.9
1/2"	12.5	100		0.01294	85.2
1⁄4"	6.3	100		0.00976	80.9
No. 4	4.75	100		0.00711	73.8
No. 10	2	100		0.00526	66.7
No. 20	0.85	100		0.00387	58.2
No. 40	0.425	100		0.00277	51.1
No. 60	0.25	100		0.00203	44.0
No. 100	0.15	99		0.00122	36.9
No. 200	0.075	98.7			

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

Reviewed By

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 TP-7

Material Source TP-7, S2, 12 FT

Project Number	21-1242
Lab ID	14297A
Date Received	10/3/2022
Date Completed	10/4/2022
Tested By	RICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	98	
9.5 mm	3/8"	96	
6.3 mm	1/4"	95	
4.75 mm	No. 4	94	6.3% Gravel
2.00 mm	No. 10	89	
850 um	No. 20	83	
425 um	No. 40	77	33.5% Sand
250 um	No. 60	71	
150 um	No. 100	66	
75 um	No. 200	60.2	60.2% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

Exploration **TP-8**

Material Source TP-8, S1, 7FT

Project Number21-1242Lab ID14298ADate Received10/3/2022Date Completed10/4/2022Tested ByRICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	97	
9.5 mm	3/8"	96	
6.3 mm	1/4"	93	
4.75 mm	No. 4	90	9.8% Gravel
2.00 mm	No. 10	85	
850 um	No. 20	79	
425 um	No. 40	75	29.6% Sand
250 um	No. 60	70	
150 um	No. 100	66	
75 um	No. 200	60.6	60.6% Fines

Searsport, ME

Test Pit

Moffatt & Nichol

TP-9, S1, 6.5 ft

Sears Island Offshore Wind Terminal

Project Name:

Client:

Project Location:

Material Source:

Material Description:

Report of Hydrometer

ASTM D422-63 (07)

Project Number:	21-1242
Lab ID:	14299A
Date Received:	10/3/2022
Date Completed:	10/12/2022
Tested By:	N. Davis

Sieve Analysis				Hydrom	eter Anal	ysis	
Sieve Size	Standard Designation (mm)	Amount Passing (%)	Specification		Particle Size (mm)	Amount (%	Passing %)
3"	76	100		_	0.05074	99).2
2"	50	100			0.03661	97	.6
11⁄2"	38.1	100			0.02589	96	6.0
1"	25	100			0.02589	96	6.0
3/4"	19	100			0.01854	92	2.8
1⁄2"	12.5	100			0.01361	88	8.0
1⁄4"	6.3	100			0.01023	81	.6
No. 4	4.75	100			0.00743	75	5.2
No. 10	2	100			0.00548	65	5.6
No. 20	0.85	100			0.00397	57	.6
No. 40	0.425	100			0.00285	51	.2
No. 60	0.25	100			0.00203	48	8.0
No. 100	0.15	100			0.00124	35	5.2
No. 200	0.075	99.8					

Comments:

26 Coles Crossing Drive, Sidney, ME 04330 • P: (207) 626.0600 • F: (207) 626.0700 • E: infosidney@swcole.com

Reviewed By

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 TP-10

Material Source TP-10, S1, 3 FT

Project Number21-1242Lab ID14300ADate Received10/3/2022Date Completed10/4/2022Tested ByRICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	
150 mm	6"	100	
100	0	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	90	
19.0 mm	3/4"	88	
12.5 mm	1/2"	85	
9.5 mm	3/8"	86	
6.3 mm	1/4"	82	
4.75 mm	No. 4	80	19.5% Gravel
2.00 mm	No. 10	73	
850 um	No. 20	65	
425 um	No. 40	58	40.1% Sand
250 um	No. 60	52	
150 um	No. 100	47	
75 um	No. 200	40.4	40.4% Fines

ASTM C-117 & C-136

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL -EXPLORATIONS AND GEOTECHNICAL ENGINEERING SERVICES

 Client
 MOFFATT & NICHOL

 Exploration
 TP-10

Material Source TP-10, S2, 10 FT

Project Number21-1242Lab ID14301ADate Received10/3/2022Date Completed10/4/2022Tested ByRICHARD SEYMOUR

<u>STANDARD</u> DESIGNATION (mm/µm)	<u>SIEVE SIZE</u>	AMOUNT PASSING (%)	1
150 mm	6"	100	
100 mm	4"	100	
75 mm	3"	100	
50 mm	2"	100	
38.1 mm	1-1/2"	100	
25.0 mm	1"	100	
19.0 mm	3/4"	100	
12.5 mm	1/2"	99	
9.5 mm	3/8"	99	
6.3 mm	1/4"	96	
4.75 mm	No. 4	95	5.1% Gravel
2.00 mm	No. 10	89	
850 um	No. 20	83	
425 um	No. 40	79	30.1% Sand
250 um	No. 60	75	
150 um	No. 100	70	
75 um	No. 200	64.9	64.9% Fines

Conso	lidation	Test
-------	----------	------

ASTM D-4767

Project Number:	21-1242
Lab ID:	14070A
Date:	8/2/2022

Project Name:	Searsport Island
Client:	Moffatt & Nichol
Boring:	MB-2

1U

16-18

Sample: Depth:

oth:

P _c =	1.7
C _C =	0.195
C _R =	0.021
w =	31.4%
$W_L =$	33
W _P =	17

Comments:

Report of Moisture-Density

Method ASTM D-1557 MODIFIED Procedure A

 Project Name
 SEARSPORT ME - SEARS ISLAND OFFSHORE WIND TERMINAL - EXPLORATIONS AND GEOTECHNICAL

 Client
 MOFFATT & NICHOL

 Material Type
 TEST PIT

 Material Source
 TP-4, S1, 8.0-10.0 FT

 Project Number21-1242Lab ID14292ADate Received10/3/2022Date Completed10/12/2022Tested ByBRANDON CHAPUT

Moisture-Density Relationship Curve

Comments

Darrell A. Gilman

26 Coles Crossing Drive, Sidney, ME 04330-2573 • Tel (207) 626-0600 • Fax (207) 626-0700 • www.swcole.com

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-1
Sample ID:	R1
Depth, ft:	72.5
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Client: S.W. Cole Engineering, Inc. Test Date: 8/30/2022 Project Name: Sears Island Development Tested By: kdp/te Project Location: Searsport, ME Checked By: smd GTX #: 315943 Boring ID: MB-1 Sample ID: R1 Depth: 72.5 ft Visual Description: See photographs

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness	and Parallelism me	easurements a	ibove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00020	1.990	0.00010	0.006	YES		
Diameter 2, in (rotated 90°)	0.00030	1.990	0.00015	0.009	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-1
Sample ID:	R1
Depth, ft:	72.5

After cutting and grinding

After break

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-2
Sample ID:	R2
Depth, ft:	74.5
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Clie	ent:	S.W. Cole Engineering, Inc.	Test Date:	8/30/2022
Proj	ject Name:	Sears Island Development	Tested By:	kdp/te
Proj	ject Location:	Searsport, ME	Checked By:	smd
GT)	< #:	315943		
Bor	ing ID:	MB-2		
San	nple ID:	R2		
Dep	oth:	74.5 ft		
Visu	ual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness	and Parallelism me	easurements a	bove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00000	2.000	0.00000	0.000	YES		
Diameter 2, in (rotated 90°)	0.00010	2.000	0.00005	0.003	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00010	2.000	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00000	2.000	0.00000	0.000	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-2
Sample ID:	R2
Depth, ft:	74.5

After cutting and grinding

After break

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-2
Sample ID:	R3
Depth, ft:	83.2
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure
1	

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Notes:

Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature. The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed. Calculations assume samples are isotropic, which is not necessarily the case.

Client: S.W. Cole Engineering, Inc. Test Date: 8/30/2022 Project Name: Sears Island Development Tested By: kdp/te Project Location: Searsport, ME Checked By: smd GTX #: 315943 Boring ID: MB-2 Sample ID: R3 Depth: 83.2 ft Visual Description: See photographs

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00010	2.000	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00020	2.000	0.00010	0.006	YES	Perpendicularity Tolerance Met? YES	
END 2							
Diameter 1, in	0.00010	2.000	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00020	2.000	0.00010	0.006	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-2
Sample ID:	R3
Depth, ft:	83.2

After cutting and grinding

After break

Notes:

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-3A
Sample ID:	R1
Depth, ft:	59
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure

Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature. The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes.

Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed.

Calculations assume samples are isotropic, which is not necessarily the case.

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Client: S.W. Cole Engineering, Inc. Test Date: 8/30/2022 Project Name: Sears Island Devolpment Tested By: kdp/te Project Location: Searsport, ME Checked By: smd GTX #: 315943 Boring ID: MB-3A Sample ID: R1 Depth: 59 ft Visual Description: See photographs

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00070	1.980	0.00035	0.020	YES		
Diameter 2, in (rotated 90°)	0.00040	1.980	0.00020	0.012	YES	Perpendicularity Tolerance Met? YES	
END 2							
Diameter 1, in	0.00060	1.980	0.00030	0.017	YES		
Diameter 2, in (rotated 90°)	0.00050	1.980	0.00025	0.014	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-3A
Sample ID:	R1
Depth, ft:	59

After cutting and grinding

After break

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-3A
Sample ID:	R2
Depth, ft:	65.5
Sample Type:	rock core
Sample Description:	See photographs Discontinuity failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Client: S.W. Cole Engineering, Inc. Test Date: 8/30/2022 Project Name: Sears Island Development Tested By: kdp/te Project Location: Searsport, ME Checked By: smd GTX #: 315943 Boring ID: MB-3A Sample ID: R2 Depth: 65.5 ft Visual Description: See photographs

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedur	re P1) (Calculated from End Flatness	and Parallelism me	easurements a	ibove)			
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00070	1.980	0.00035	0.020	YES		
Diameter 2, in (rotated 90°)	0.00030	1.980	0.00015	0.009	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00060	1.980	0.00030	0.017	YES		
Diameter 2, in (rotated 90°)	0.00030	1.980	0.00015	0.009	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-3A
Sample ID:	R2
Depth, ft:	65.5

After cutting and grinding

After break

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-5
Sample ID:	R2
Depth, ft:	49
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Cli	ent:	S.W. Cole Engineering, Inc.	Test Date:	8/24/2022
Pro	ject Name:	Sears Island Development	Tested By:	kdp/te
Pro	ject Location:	Searsport, ME	Checked By:	smd
GT	X #:	315943		
Bo	ring ID:	MB-5		
Sa	mple ID:	R2		
De	pth:	49 ft		
Vis	ual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00000	1.990	0.00000	0.000	YES		
Diameter 2, in (rotated 90°)	0.00000	1.990	0.00000	0.000	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-5
Sample ID:	R2
Depth, ft:	49

After cutting and grinding

After break

S.W. Cole Engineering, Inc.
Sears Island Development
Searsport, ME
315943
9/13/2022
bp
jsc
MB-5
R3
53
rock core
See photographs Intact material and discontinuity failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Client: S.W. Cole Engineering, Inc. Test Date: 8/30/2022 Project Name: Sears Island Development Tested By: kdp/te Project Location: Searsport, ME Checked By: smd GTX #: 315943 Boring ID: MB-5 Sample ID: R3 Depth: 52.9 ft Visual Description: See photographs

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00000	1.990	0.00000	0.000	YES		
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00000	1.990	0.00000	0.000	YES		
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-5
Sample ID:	R3
Depth, ft:	52.9

After cutting and grinding

After break

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-7
Sample ID:	R2
Depth, ft:	51
Sample Type:	rock core
Sample Description:	See photographs Intact material and discontinuity failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

CI	lient:	S.W. Cole Engineering, Inc.	Test Date:	8/31/2022
Pr	roject Name:	Sears Island Development	Tested By:	kdp/te
Pr	oject Location:	Searsport, ME	Checked By:	smd
G	TX #:	315943		
B	oring ID:	MB-7		
Sa	ample ID:	R2		
D	epth:	51 ft		
Vi	isual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00020	1.990	0.00010	0.006	YES		
Diameter 2, in (rotated 90°)	0.00020	1.990	0.00010	0.006	YES	Perpendicularity Tolerance Met? YES	S
END 2							
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00010	1.990	0.00005	0.003	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-7
Sample ID:	R2
Depth, ft:	51

After cutting and grinding

After break

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-10
Sample ID:	R1
Depth, ft:	30
Sample Type:	rock core
Sample Description:	See photographs Intact material failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Cl	ent:	S.W. Cole Engineering, Inc.	Test Date:	8/31/2022
Pr	oject Name:	Sears Island Development	Tested By:	kdp/te
Pr	oject Location:	Searsport, ME	Checked By:	smd
GT	X #:	315943		
Bo	ring ID:	MB-10		
Sa	mple ID:	R1		
De	epth:	30 ft		
Vi	sual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be $\leq 0.25^{\circ}$	
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00020	1.990	0.00010	0.006	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00000	1.990	0.00000	0.000	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-10
Sample ID:	R1
Depth, ft:	30

After cutting and grinding

After break

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	jsc
Boring ID:	MB-10
Sample ID:	R3
Depth, ft:	36.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D

Notes:

Test specimen tested at the approximate as-received moisture content and at standard laboratory temperature. The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Young's Modulus and Poisson's Ratio calculated using the tangent to the line in the stress range listed. Calculations assume samples are isotropic, which is not necessarily the case.

C	lient:	S.W. Cole Engineering, Inc.	Test Date:	8/30/2022
P	roject Name:	Sears Island Development	Tested By:	kdp/te
P	roject Location:	Searsport, ME	Checked By:	smd
G	TX #:	315943		
E	oring ID:	MB-10		
S	ample ID:	R3		
D	epth:	36.5 ft		
V	isual Description:	See photographs		

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

PERPENDICULARITY (Procedure P1) (Calculated from End Flatness and Parallelism measurements above)							
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?	Maximum angle of departure must be \leq 0.25°	
Diameter 1, in	0.00030	1.990	0.00015	0.009	YES		
Diameter 2, in (rotated 90°)	0.00000	1.990	0.00000	0.000	YES	Perpendicularity Tolerance Met?	YES
END 2							
Diameter 1, in	0.00010	1.990	0.00005	0.003	YES		
Diameter 2, in (rotated 90°)	0.00000	1.990	0.00000	0.000	YES		

Client:	S.W. Cole Engineering, Inc.
Project Name:	Sears Island Development
Project Location:	Searsport, ME
GTX #:	315943
Test Date:	9/13/2022
Tested By:	bp
Checked By:	smd
Boring ID:	MB-10
Sample ID:	R3
Depth, ft:	36.5

After cutting and grinding

After break

Consolidation Test

14494A

12/19/2022

ASTM D-4767

Project Number: 21-1242

Lab ID:

Date:

Project Name:	Searsport, ME Sears Island Offshore Wind Teriminal
Client:	Moffatt & Nichol

Boring:	LB-3
Sample:	5D-7
Depth:	Reco

5D-7D Recompacted SS samples

N/A
0.19
800.0
8.9%
21
14

Comments:

Reviewed By

Consolidation Test

14496A

12/19/2022

ASTM D-4767

Project Number: 21-1242

Lab ID:

Date:

Project Name:	Searsport, ME Sears Island Offshore Wind Teriminal
Client:	Moffatt & Nichol

Boring:	LB
Sample:	5D
Depth:	Re

LB-6 5D-7D Recompacted SS samples

P _c =	N/A
C _C =	0.18
C _R =	0.008
w =	10.4%
$W_L =$	22
W _P =	14

Comments:

Reviewed By